SCATTERING FOR SCHRODINGER OPERATORS WITH CONICAL DECAY

ADAM BLACK AND TAL MALINOVITCH

ABSTRACT. We study the scattering properties of Schrodinger operators with potentials that have
short-range decay along a collection of rays in R?. This generalizes the classical setting of short-range
scattering in which the potential is assumed to decay along all rays. For these operators, we give
a microlocal characterization of the scattering states in terms of the dynamics and a corresponding
description of their complement. This shows that any state decomposes into an asymptotically free
piece and a piece that may interact with the potential for long times. We also show that in certain
cases these characterizations can be purely spatial.
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1. INTRODUCTION

In this paper, we study the scattering properties of Schrodinger operators with potentials that
have short-range decay along a collection of rays in R%. This generalizes the classical setting of short-
range scattering in which the potential is assumed to decay along all rays. By now, the scattering
theory of short-range potentials is classical, but much less is known about the anisotropic setting
in which the behavior of the potential at infinity depends on the direction. Here, we study how
purely geometric constraints on the potential affect scattering. Namely, we consider real-valued
potentials that are concentrated near a subset of R? with complement containing rays to infinity.
We show that microlocally the scattering states are precisely those that concentrate along these rays
in phase space. States in the complement of the scattering states, called the “interacting subspace”
below, thus must avoid these rays in a suitable sense. We remark that unlike in the short-range
theory, these interacting states need not be pure point so that they may form interesting examples
of continuous states satisfying some geometric confinement condition - see the discussion of surface
states in [3] for several examples. Besides boundedness and the aforementioned geometric condition,
we make no other assumptions on the potential so that in particular it may be very rough or have
wild behavior at infinity in some directions.

Let us now recall the classical picture of short-range scattering in order to situate our result. We
consider a self-adjoint Schrédinger operator of the form

H=Hy+V

on H = L*(R%) where Hy = —%A and V is a real-valued bounded multiplication operator. There
are a variety of decay conditions one can impose on V' in order to consider it short-range (see [1]
and the references therein), but we focus on the Enss condition

(11) ”XBﬁVHOp S Ll([07 OO),dT‘)

where y is the indicator function of a subset of R? and B, is the ball of radius r in R?. This
condition was originally posited in [9], in which it was proven that the wave operators

Qi — ¢lim eitHefitHo
t—F oo

whose ranges consist of the scattering states, exist on all of H, and are asymptotically complete.
This means that
H = Ran(QF) @ Hpp(H)
or equivalently
(1.2) H.(H) = Ran(Q¥)

The proof of this result due to Enss [9], as well as its refinement by Davies [5], relies on studying
the phase space localization of a state as it evolves under H. Ultimately, the scattering states are
characterized dynamically via the celebrated RAGE theorem [2, 14].

Motivated by this classical theory, in [3] we studied the scattering properties of potentials assumed
to decay only in some coordinate directions. Formally, if .S, is the set of points of a distance less
than r from some subspace of R? then we studied potentials satisfying the subspace Enss condition

||XS$VHOp € Ll([oa oo), dT)

In this setting, we showed that {2~ exists for all ¢ € H and that the orthogonal complement of its
range is given by the set of surface states

Howr = {00 € H | Vv > O,tlim ”XSste—itHw‘| — 0}
so that
H =Ran(Q") ® Heur
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Thus, even though asymptotic completeness in the sense of (1.2) does not generally hold in this
setting, we were still able to provide a dynamical characterization of the non-scattering states,
albeit not a spectral one. That work proceeds via the phase space scattering methodology of Enss
and makes heavy use of the subspace structure of the potential and the tensor product structure of
R?. However, one expects to have a robust theory of scattering for a larger class of geometrically
constrained potentials. Indeed, a potential that admits asymptotically free trajectories should
produce scattering states, at least intuitively. Classically, one expects that a particle moving under
the influence of a potential may escape along some ray so long as the strength of the potential
attenuates fast enough along that ray. Here, we study the quantum analog of this phenomenon:
we let V' decay inside a (possibly infinite) collection of convex cones. For a ray in the interior of
a cone, the distance to the boundary of the cone increases along the ray. Thus, the use of cones
enforces that the effect of the potential must decrease along any classically free trajectory, while
the convexity is a technical convenience.

In the anisotropic setting and others with multiple channels of scattering, the main challenge is
that not all continuous states will have their dynamics governed by the RAGE theorem, which is the
starting point of the Enss method. For time-dependent problems, some authors have circumvented
this difficulty by defining the space of scattering states via their dynamical properties and then,
when possible, showing that these states are precisely those in the range of a wave operator. Though
the class of potentials considered (time-dependent and spatially decaying in all directions) are quite
different, the works of Kitada and Yajima [12] and Yafaev [20] are influential to our methodology.
In the former, a microlocal characterization of the set of scattering states is developed while in the
latter the author defines the scattering states in analogy to the RAGE theorem as those that leave
any compact set, in the appropriate sense.

Before specifying the class of V' more precisely, we mention some lines of inquiry that are con-
nected to our results. Previously, Yafaev et al [8, 18, 21] made a deep study of certain types of
anisotropic potentials, as was recalled in Section 6.3 of [3]. In this series of papers, the authors
considered potentials that decay short-range in some coordinate directions, but slower in others.
They constructed many examples of potentials in this class for which asymptotic completeness does
not hold and proved the existence of modified wave operators for the states in the complement of
the range of the standard wave operator. Thus, they show that multiple channels of scattering may
appear in the presence of anisotropy if the potential is chosen carefully. In contrast, the present
paper is concerned with a much more general class of anisotropic potentials. Our main theorems
provide constraints on how asymptotic completeness may fail by showing how states in non-free
channels must behave micro-locally, but we do not show that any specific potential actually exhibits
this failure (for such examples, see Section 6 of [3] or [19]). And so, the potentials considered in
[18, 19] fall within the purview of our results and provide important demonstrations of the phenom-
enon we wish to study. Furthermore, previous work has concentrated on anisotropy with respect to
orthogonal subspaces of R, while our goal is to study potentials that have arbitrary decay along
each ray towards infinity.

Less closely related, but still relevant is the recent progress in understanding how the geometry
of the potential affects the spectrum of H, especially in the study of geometrically-induced bounds
states. One representative example is [10] in which a condition is given for the existence of bound
states due to singular potentials supported on certain curves in R?. Where our theorem applies
to these settings, such states will appear in the interacting subspace Hint (to be defined below).
Beyond this, one may place the geometry in the underlying space instead of in the potential by
studying short-range scattering on a manifold as in [11].

There are also many directions for further research suggested by our results. First, it is quite
natural to ask whether one can give some sort of spectral criteria for the presence of interacting
states since at present our characterization is purely dynamical. Furthermore, under additional
assumptions on the potential, the dynamics or spectral properties of the interacting states are
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themselves worth investigating. Perhaps most importantly, if V' is partially (quasi-)periodic, one
can ask whether the potential acts as a waveguide in the sense that it produces ac states that
propagate in its vicinity (see [3] for a partial answer to this question). Given the presence of
such ac states, one may ask many questions about their dynamics, for instance, if they exhibit
anisotropic ballistic transport and whether they satisfy anisotropic dispersive estimates. In an
unrelated direction, it would be interesting to construct potentials with conical decay that produce
singular continuous states and to study their dynamics. More physically, one could study conical
scattering with periodic background, i.e by replacing Hy with Hy + W where W is periodic. This
would model a crystal with a conical defect. The Enss method has been employed for periodic
background [16], but the generalization to conical decay presents some technical challenges.

2. MODEL

As mentioned above, we consider a self-adjoint operator H on H = L?(R%) of the form

(2.1) H=Hy+V
where Hy = —%A and V is a real-valued bounded potential that decays inside a collection of convex
cones.

To be more precise, let us first fix some notation. For any 2 € R, ¢ € S, and v € (0, 7) let

Cop =y € R | {(y — 2),7) > cos()lly — x|}

be the open cone with vertex x in the ¥’ direction with aperture 2. Since we will often work with
cones with vertex at the origin, we let Cj, denote Cp .. Unless otherwise specified, all cones will
be assumed to be convex or equivalently have v < 7. Furthermore, for any cone C, let A,(C) be
the set of points a distance greater than r > 0 from C*:

Ar(C) ={y eRY | d(y,C) > r}

See Figure 1. We will use the shorthand AS(C) = [A,(C)]°.
For some collection of convex cones {C;}icz, let

-Ar = U AT(C’L)

i€l

FiGUre 1. Illustration of C, 5, and A,(C, ) for d = 2: in orange we have the
complement of C, 7., which is where the potential is concentrated. In black we have
the set A,(C;,5,), in red we indicate ¢ and .
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We assume that V satisfies the following generalized Enss condition with respect to {C;}iez:
x4, Vllop € L*([0, 00), dr)

which should be compared to (1.1). Note that A, depends implicitly on the collection {C;};ez and
therefore this condition depends only on the geometry of V.

We will study the scattering properties of H via the (positive time) wave operator ~, which
we simply write as Q. Our results may be easily reformulated for QT, but we focus our attention
on the limit ¢ — co. Before stating a precise theorem (see Section 3), let us give a few examples of
the geometries we plan to consider and explain how they may be described via a union of convex
cones.

Example 2.1 (Single cone). It is already interesting to consider V' which decays in some convex
cone C, that is, {C;}iez consists of a single cone. For such potentials, we will show that Ran(2)
consists of states which evolve into C with momenta lying in C whereas Ran(Q)* consists of states
which may interact with V for arbitrarily long times. These characterizations are microlocal in the
sense that they depend on the position and momentum localization of a state.

Example 2.2 (Non-convex cone). The use of convex cones (that is, v < 7) is merely a technical
convenience: a cone with v > 5 can be described as an intersection of a collection of half-spaces,
and therefore falls within the purview of the analysis below. To see this, say C = Cg 5, for v > §
and define

Sy ={w e S| (T, W) = cos(y — =)}

T
2
the conic envelope. Then one may check that
c=J Comz
WELy

Example 2.3 (Short-range scattering). The generalized Enss condition encompasses the classical
Enss condition (1.1) for short-range potentials. Indeed, one may study short-range potentials in
the present setting by writing

Bi= ) A(Cyz)
vesd—1
which may be readily verified.
Example 2.4 (Subspace potentials). In [3], we studied potentials that are supported near a sub-
space of R%, as explained in Section 1. Using the product structure of this geometry, we proved
that Q exists for all 1) € H and gave a purely spatial characterization of Ran(Q)*. We will show

that one may recover these results in the present setting since by similar considerations as in the
above example, it is easy to see that

Sﬁ = U AT(C*’g)
70y, xSd—k—1

where 05, = (0,...,0) € R¥

Example 2.5 (Broken subspace). A variant of the above example is a “broken subspace,” written
here in d = 2 for simplicity: consider @, 7, € S! and let 7 and 7 be the rays {t# | t > 0} and
{tvy | t > 0}, respectively. Then consider V such that

suppV C T, := {x € R? | d(z,7 U) <}
We may accommodate such potentials by observing that

Tr = (Crﬁ*,ﬁ*,’y U C*Tﬁ*,fﬁ*,ﬂ'f'y)c
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where U, =
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U1+72
(U1 +02|]

and ~ is half of the (non-obtuse) angle between v} and s, see Figure 2. In this

example, one of the cones is convex while the other is not.

FIGURE 2. The geometry of the broken subspace: in orange, we have the vectors
v1, V9, in red we have the vectors v, and —v,, in blue we have the outline of T,
which contains supp V.

3. DEFINITIONS AND RESULTS

3.1. Notation and Conventions.

We let H denote L2(R?) with norm denoted | - | and use the convention that its inner
product (-, -) is anti-linear in the first argument and linear in the second.

e The symbols || - || and (-,-) will also be used for the norm and inner product on R
e d(-,-) is used for the distance between points or subsets of R
e B, will mean the ball of radius r centered at the origin in either R? or # depending on

context.

For A C R?, A€ denotes its complement.

x4 will mean the indicator function of a set A C R%.

A € B denotes that A is compactly contained in B.

S = S(RY), the Schwartz space.

We use the following convention for the Fourier transform of f € H:

£(6) = F(H(E) = (2m)°8 / F)eE da

Rd
FUH)@) = @2n) / f(&)ee de
Rd

For some cone C, 5~ and r > 0, we define A,(C,5,) C R? to be the set of all points at a

distance greater than r from C¢ - .

AT(Cz,E,'y) = {y € Rd | d(y’Cc

x,f)','y) > T’}

As explained below,
-

—

Ar(cx,ﬁ,'y) = Cx,f)’,’y + mv
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which we will use to define A, for r < 0. We will also use the shorthand

Aﬁ (Cx,ﬁ,'y) = [AT(Cm,ﬁ,'y)]c
o We will let
-Ar = U Ar (CZ)
i€
for {C;}iez some collection of cones.
e For some cone C, 5, and k > 0 we let

Di(Coiqy) = {¥ € S | supptp € A(Cr)}
D(Criy) = {¥ € H | suppd C C,}

e For the definition of Ps(-) see Appendix A.
e v, will always denote the evolution of ¢ under H at time ¢:

e = e My
e We will also use the following notation:
Q(t) — eitHe—itHO
O* (t) — eitHo e—itH
and

0 =0 = slim ¢ Ho
t—+o0

with domain D that will be described below.
e Ran(Q) will refer to the range of Q on its natural domain D.

3.2. Definition of the scattering and interacting subspaces. In order to give the aforemen-
tioned microlocal characterizations, we will need a suitable way to describe a state’s localization in
phase space. To this end, for every § > 0, we define a positive operator-valued measure (POVM),
denoted Pj, on the phase space RZ x Rg, with the following properties:

(1) (Observable) P5(R2?) = id.
(2) (Momentum localization) Let B € R% and D C R? be Borel sets such that d(B, D) > 6.
Then for any E C R? x B Borel and ¢ € H such that suppy C D

Ps(E)y =0

(3) (Approximate space localization) Let A ¢ R? and D C R? be Borel sets such that
d(D,A) > 0. Then for any ¢ > 0 there exists some constant C' > 0 depending only on
ns so that for all E C A x R?

IP5(E)xpllop < Cld(A, D))

(4) (Microlocal non-stationary phase estimate) Let €;(F) C R? denote the classically allowed
region associated to £ C R?? at time ¢:

¢ (E) ={z+tp| (z,p) € E}
Let F'  R? be Borel. For any ¢ > 0 there exists C' > 0 such that
Ixpe™ " 0 P5(E)|lop < Cd(]t])~*
for all ¢ such that d(t) := d(€,(F), F) > [t].
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(5) (Spatial non-stationary phase estimate) Let {A;};>0 be a collection of Borel subsets of R?.
Then for any ¢ € S(RY) Schwartz such that supp@ € D Borel, £ > 0, and £ > 0 there
exists some constant C'(¢,¢,¢,d) > 0 such that

1Ps(Ar x RY)e™"Hog|| < Ct*

for all ¢ such that d(As, tD) > et.

We refer the reader to [4] for the definition of a POVM and relegate the construction of a POVM
satisfying the above properties to Appendix A.
To specify the domain of €2, we let

D(C:E,U,'y) = {1/} eH | suppz/) C Cﬁ,'y}
In particular, D(C, ) is independent of the vertex . For some collection of cones {C;}iez, we let
D=JD(C)
i€l
For n > 0 and some cone C, 5, we let the corresponding outgoing subset of phase space be the
set of points with space coordinates in A, (C, ) and momentum coordinates in Cy,:

Wn;out(cx,ﬁ,'y) = {(y,p) € RQd ’ ye An(cx,ﬁ','y> and pE Cz‘;’,—y}
and let the total outgoing subset be

n out — U Wn out
€L

We also define a variant of W,.out(C) which is restricted away from 0 in the momentum variable:

Wn,m;out(cm,ﬁ‘,'y) = {(yap) € RQd | RS An(cx,z‘)‘,y) and pE Am(cz‘)‘,y)}

and its respective total set

n m;out — U Wn ,m; out
i€

See Figure 3.

Wn ,m;out @ I/V'n,;out

FIGURE 3. Illustration of the phase space sets Wiy.out(Ci) and Wy, m.out(Ci): space
coordinates are inside the black cone while momentum coordinates point inside the
red/blue cone, respectively.
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This allows us to define the scattering subspace

Hscat = {0 € H | Fv,m, b9 > 0 so that Vo € (0, dp) tlim || (Ps(Wat,msout) — Id)2pe|| = 0}
which we will prove below is dense in Ran(Q2) := Q(D).

Remark 3.1. The above characterization of Ran(2) is similar to those given in [12] and [22] in
the short-range setting.

We also define the interacting subspace
Hint = {¥ € H | Yv,m > 0,359 > 0 so that Vd € (0, dp) tlim | Ps Wt meout)¥e || = 0}

which consists of states that can interact with V for arbitrarily long times. We will show that this

subspace is equal to Ran(f2)*.

With these definitions, we may state our main theorem:

Theorem 3.2. Let H = Hy+ V where Hy = —%A and V is a real-valued multiplication operator
such that

o Ve L®(RY)

e There exists a collection of cones {C;}icx for which V' satisfies the generalized Enss condition
(3.1) x4 Vllop € L*([0,00), dr)
Then

(i) (Ezistence) For all ¢ € D the limit Q) exists. Furthermore, o(Hp) C 0ac(H).
(i1) (Dynamical description of scattering states and their complement) We have

Q(D) = /Hscat
QD) = Him

Furthermore, we also show that for half-spaces there are spatial characterizations of (D) and
Q(D)*:

Theorem 3.3. Suppose that {C;}icz consists of half-spaces. Then we have that
(D) = [ € H [T > 0. [, el = 0)
—00
UD)t = {y € H| Vo >0, lim |xa,%:l =0}
t—o00

Remark 3.4. In fact, using a small variation of the proofs below, one can give slightly different
descriptions in Theorem 3.2:

QD) ={p € H|VYn>0,3Im,d >0, so that Vd € (0,d) tli)m | (Ps(Wh,msout) — Id)eb|| = 0}
QD)* = {¢ € H | Vm,n > 0,35 > 0 so that V& € (0, o) i [ Ps (W miout )t | = 0}

In this description, the space and time variables are decoupled completely, which gives some further
insight into the behavior of the interacting states. Since Theorem 3.3 requires taking n = vt, we
use the corresponding microlocal definition in Theorem 3.2.

4. EXISTENCE OF THE WAVE OPERATOR {2

First, we record a geometric fact:

Proposition 4.1. We may write A,(Cy5,) = Cp iy + SHITWE’.

Proof. By projecting to any plane containing ¥, the claim is clear from Figure 1. O
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For » < 0 we will use the above as the definition of A,(C). We now use the following direct
application of the Corollary to Theorem XI.14 from [13]:

Lemma 4.2. Let u € S and let G be an open set such that suppu € G . Then for any £ € N, there
is a constant C' > 0 depending on £,u, and G so that

le™ " ou(x)] < C(1+ flal| +[t])~*
for all pairs (z,t) such that ¥ ¢ G.

We let
Dk(cm,ﬁ,'y) = *W €S | Supplﬂ S Ak(cﬁ,'y)}

Note that the set Dy(C, ) is independent of the vertex x and that |J Dx(C, ) is dense in
k>0

D(Cyi,y)-
We use this to prove the following proposition which will be useful here and in the sequel.

supp(1))

1
1
1
!

X

FIGURE 4. Illustration of the momentum of v, in red, with respect to An(C), in
orange. The dashed blue line corresponds to a classic trajectory from z with mo-

mentum at the edge of the red cone.

Proposition 4.3. Let C be any cone and k > 0. Then there ezists ¢(C) > 0 such that for all
Y € Di(C) and any € > 0 there exists C(¢,£) > 0 such that

Ixag e ol < O+ Jt)~*

for any pair of (n,t) € R? satisfying
(4.1) c<kt—n
Proof. Write C = Cy 5~. In order to apply Lemma 4.2, we take G = Ay (Cy ). Thus, we must show
that so long as kt — n is sufficiently large, for all y € A5(Cy5.), we have that ¥ € A} (Cy,) or
equivalently
tAk(Cgﬂ) C An(cx,gﬁ)
Using Proposition 4.1 and the fact that Cy,, is invariant under scaling, we see that we must show

that

kt n kt —n
4.2 Cy ——UC Cy — U — Cj — U —x CCy;
2 B e T e S ) TG



SCATTERING FOR SCHRODINGER OPERATORS WITH CONICAL DECAY 11

FIGURE 5. Illustration of the inclusion (4.2)
In words, we must show that the cone Cy, shifted by the vector S’fi@‘)ﬁ’ — x is contained in Cy .,

which will be the case as long as this vector lies in the cone. But this is clearly true if kt — n is
large enough with respect to fixed x i.e if (4.1) holds.
Therefore, we may apply Lemma 4.2, to see that for any ¢ > 0

lem "oy (y)] < CA+ [lyl + [¢)~*
for all y € Af,(C,.5) where C is independent of y and ¢. Choosing ¢ large enough, we get that

ws e ™0 [ @yl i) de < O )
A%(Cz,i,"/)
as needed. O

This is already enough to prove the existence of the wave operators:

Proof of part (i) of Theorem 3.2. By Cook’s method (see [13] Theorem XI.4), it suffices to show

that for all ¢ in some dense subset of D = |J D(C;)
1€T

/||Ve—“H0¢|| dt < oo
0

We will take as our dense subset |J |J Dg(C;).
€T k>0
For any i € Z and any k > 0, write C; = Cy 5,4, let 0 < e < k, and let ¢ € Dy(C,5,). We can

then write
[Ve ™ op|| < |[Vxa,e o) + |V xac,e oo
< NVxazllopll¥oll + Mlix ac, e v

as AS, C AS,(C;). The first term is L1([0, 00), dt) by the assumption (3.1) whereas we will estimate
the second term via Proposition 4.3. For this, let ¢g = ¢o(C;,5,) be the constant from Proposition
4.3 and let To = ;.. By Proposition 4.3 with n = et, we see that for any £ > 0 and t > Ty there
is some C' > 0 so that

(4.4) IXac, ey oyl < C(1+1)~"
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uniformly in ¢. It follows immediately that ||V e~"Ho4)| is integrable on [0, 00) as needed.
Furthermore, since o(Hy|p) = o(Hy), the intertwining property of Q2 implies that o(Hg) C 0ac(H)
as claimed. 0

5. DESCRIPTIONS OF Ran(f2) AND Ran(Q)*

In this section, we give descriptions of Ran(2) and its orthogonal complement in terms of the
dynamics of H. In particular, we show that states in these subspaces may be characterized by their
location in phase space as t — co. Here, as before, Ran(Q2) indicates the range of 2 on its natural
domain D, as defined in the previous section.

5.1. Characterizing Ran(Q2). Recall the definition of the outgoing set associated with a single
cone Cy 7~

Wn;out(cxﬁ,’y) = {(yvp) € RQd ’ Yy e An(cz,ﬁ,'y) and JAS C’U,'y}
and that Wy m.out = U Wam:out (Ci)-
1€l
We again record some purely geometric facts:

Proposition 5.1. Let C be any convex cone and let A% be defined relative to a collection of cones
that contains C.

(1) For any n,t,r >0 and m € R
A€ (W mout(C)), A5(C)) > n+mt —r
(2) For any n,t,r >0 and m € R
d(C(Wpmout(C)), Ax) > n+mt —r
Proof. The proof of (1) follows from the fact that for any ¢t > 0
An(Capy) + 1A (Coy) = Antim(Copy)
Indeed, because tCy . = Cy and A, (Cy5) = T + Cy + s We see that

S (7)
An(Co) + AR (Co) = (& + Cory + — T + H(Ciry + — )
n ZT,0,7Y m v,y T €T v,y Sln('y)v v,y Sln(’y)v

(5.1)

n + tm
sin(y) ~ sin(y)
where we have used that Cy, is convex. The claim now follows from the definition of A,(C).
The proof of (2) is now immediate because for all i € Z, AS C A%(C;). O

=x+ Cﬁﬁ + ( )77 = An—i—tm(cz,ﬁ,’y)

With this in hand, we can prove the main technical estimate in the proof of Theorem 3.2 (ii).

Lemma 5.2. For anyv > 0,0 < 3,0<¢e < g —9, and £ > 0 there exists C > 0 so that for any
2W>s>2t>0

(5.2) 1(92s — £) — 1) PsWariout) o < / IV Xt llop doo + O
t

For any vym and £ > 0 if 0 < § < m, and 0 < e < m — 9§ there exists C > 0 so that for any
s>t>0

(5-3) ||(Q(5 - t) - Id)PJ(th,m;out)HOP < / HVXAsw ||0p dw + Ct_é
t
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Proof. We start by noting that

1(Q2(s = 1) = Id) Ps(Wotmiont)llop = [[(2(s) = Q) Bs(Wotmiout ) llop
We use the identity

Q(s) — Qt) = / eHi(H — Hy)e ™Ho gy
t
by writing, for 0 <e < 5 -0

S S
H/ﬂmw—HM%%%MMMMMWS/NFW%%MMmme
t t

S S
< / 1V lop cw + M / e, €0 Py (Witsout) o deo
t t

From the microlocal non-stationary phase estimate on Ps (Lemma A.5) and Proposition 5.1 with
m = 0, we see that

Xz PsWitsout)lop < Clot — we] ) < O — 26)6] 4D
for all w < 2t since by Proposition 5.1 we have
A€ Watious), Ay) > vt = we > (5 = e)u
which is in turn greater than dw because € < § — d. Therefore, because s —t <t

-1

>,
(v — 2e)tH1gt+1 %

S
(5'4) / HXAgwe_inOP&(th;out)Hop dw < C
t
In summary, we see that for any ¢t > 0 and any s € [t, 2]
S
1(©2(s = t) = 1d) Ps(Watsout) llop < / 1V X Ac llop dw + Ot~
t

for some constant C' independent of ¢ and s.
If we replace Wyt.out With Wt m:out, again from Lemma A.5 and Proposition 5.1 with m > 0, we
see that, fore <m — 9

I, €7 PsWat,miout) lop < C (vt + (m — e)w) =Y
for all w > 0 since by Proposition 5.1, for § < m and e < m —§
d(Cwy Watmsout), ASy) = vt + mw —ew > (m — e)w > dw

Therefore,
S S
/ ||X.Agwein0P5(th,m;out)||0p dw < C’/(vt + (m — 5)w)_l_1 dw < C(Ut)_e
¢ ¢
In summary, we see that for any s > ¢ > 0
oo
1(2(s — t) = 1d) Ps(Wot,msout)llop < / IVxas, llop dw + Ct~*
t

for some constant C' independent of ¢ and s.



14 ADAM BLACK AND TAL MALINOVITCH

Recall that
Hscat = {0 € H | Fv,m, b9 > 0 so that Vé € (0, ) tlim || (Ps(Wat,mzout) — Id)1¢|| = 0}

Theorem 5.3. Let ¢ € Hgcar. Then QY exists and is in D, or equivalently b € Q(D).
Alternatively, if for some v > 0,6 < § and £ > 1 there exists C' > 0 so that

1(Bs(Watsout) — Id)ve]| < Ct™*
for all t > 0 then Q*Y exists and lies in D.
Proof. We show that
QX (t) := eitHo—ith
is Cauchy as t — oco. For that, fix ¢ > 0 and suppose that t < s. Observe that
1(2%(s) — Q% ()| = [1(2(s — 1) — Id) |
which comes from multiplying by e~##Q(s) and the identity
efitHQ(s)Q*(t) =Q(s — t)efitH
Since ¢ € Hscat, there is some v, m, dy > 0 such that for any § < dg
1(Fs(Wotsmiout) — Id)¢|| = o(1)
as t — oo. For these v, m > 0 choose § < min(m, dp), so we may write
1(Q(s — 1) = Td)ee|| < (s — ) = I) Ps(Wot,miout) e ]| + [[(Q(s — ) = I) (Ps(Wotmsout) — Id)t |
= [|(€2(s — t) — 1d) Bs(Wot,miout )¢t || + o(1)

as t — oo. By using Lemma 5.2, we conclude that, for 0 <e <m —§
192" (s) = )l < Ct~“ + / IV XAz llop dw][9[] + o(1)
t

for some constant C' independent of ¢t and s. The second term decays with ¢, by assumption (3.1),
and thus the entire expression goes to 0 as t — oo.

This shows that 2*1) exists, so to see that it lies in D first note that for § < m, Ps(Wyt,m:out) ¥t €
D by Proposition A.3 and thus so does 0 Ps(Wot,msout ). Now observe

t—o00

19%(£)1 — €10 Ps(Wormiout) ¥t = [0e — Ps(Wotmiout)¥e|] —— 0

so that the claim follows because D is closed.
To see the second claim, for ¢ > 0 and s € [t,2t], write as before, for the given v and 0 < §

1(2(s = 8) = 1d)ghu[| < [[(2(s = 2) = 1d) Ps(Worout )2l + [[(€2(s =) = 1d) (Fs(Watout) — Id)2h||
< I(Q(s — t) = 1) Ps(WotoutJtoel| + Ct~*
and again apply Lemma 5.2 to see that

(" (s) = " )yl < Ot~ + / IV XAz llop dw]|4]]
t

for some constant C' independent of ¢ and s.
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To conclude, for any s >t > 0, fix N so that s € [2V¢,2V*1] and then write

N-1
102 (s) = (@)wll < D Q™) — (2 8w + (2" (s) — 2" 2V )|

n=0
N N—1 on+1g s
<oy @+ / 1V Xt llop deo 6] + / 1V Xt llop deo ]
n=0 n=0 ong oN¢

S
<cit 4 / 1V XA llop doll4]
t

where C does not depend on N. Note that in this step we require the prescribed rate of convergence
in ||(PsWat.msout) — Id)3|| < Ct~¢. This, combined with condition (3.1), prove that Q*i exists.

To see that 2% lies in D, we proceed as before by noting that for any 6 > 0, Proposition A.3
shows that

supp F(PsWorou)¥) C Bs+ | Cosy
(z,9,7)€Z
Now we can write
109 — 0 Ps(Wasous)Well < 1259 — Q*(6)0o]| + [ (£)9) — €70 Ps(Wotsous )l
By taking the limit ¢ — co we see that for any v > 2§ > 0
supp(m C Bs + U Ci
(z,9,7)€Z

Varying over all § > 0, we conclude that Q*y € D because D = |J D(C;) . O
i€l

Having shown that Hgcay C Ran(2), we now show that Hgeat is dense in this subspace. For this
we will start with a lemma:

Lemma 5.4. Let 1) € Q(Dy(C;)) for some i € T and k > 0. Then there is some Ty = To(k,C;) such
that for any v,m,e, £, and § satisfying

k—wv

v,e € (0,k) 0<m<k 0 <6 < min(k —m, 5 ) >0
there exists C' > 0 such that
(5.5) P Wt mons) = 100 < €27 [ e,V ol s
t

for all t > Ty.

Proof. Let ¢ = Qg for ¢ € D(C;), some i € Z, and some fixed k > 0. It suffices to show that for
some choice of parameters as above that for all t > T}

(56) ||(P6(th,m;out> - Id)eiitHOSDH < thé

and

(5.7) I(Q = Id)e~ " op| < Ct~F + / IxacsVllopllell ds
t
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in light of the inequality
[ (PsWot,msout) — Id)eiitHQbH = [|(Ps Wt miout) — Id)QefitHOSOH
< NP5 Wotmiour) — Id)e™ ]| + | (PsWormiont) — 1) (2 = 1d)e™ "o

and the fact that || Ps(Wytm:out) — Id ||op is bounded independently of t.
The inequality (5.7) is proven by first choosing ¢ < k and writing

H(Q . Id)efitHo(pH < / Hvefi(ert)HoSOH ds = / HVGfiSHO(pHdS
0 t

o0 o0
< / 1AV lloplli6] ds + M / xa, e *H0,]| ds
t t

where have used that ||¢|| = ||¢||. Now let ¢ be the constant from Proposition 4.3 and note that
c<ks—es

so long as s > Ty := =.. Therefore, Proposition 4.3 with n = s implies the desired inequality for

any t > T7. Therefore, it remains to show (5.6) for some choice of parameters as above.
To see inequality (5.6), we write C; = C, 7, and observe that

| (PsWot,msout) — Id)eiitHoSOHQ < (67“H090: Pé(Wgt,m;out)eiitHo ®)
< (0, Py o (€)™ 00) < Nl Po VS mous (€)™ 0|
Noting that
vct,m;out(ci> = Af}t(cl) X Rd |_|Avt(cl) X Ain(cl_fﬁ)

and recalling that supp ¢ € Ay (Cy~), by the momentum localization properties of Ps (Proposition
A.3) we see that

Pé(Wgt,m;out(Ci))SO = P5(ch)t(cl) X Rd)@

as 6 <k —m and d(Ax(Cyp), A5, (C;)) > k —m.

Next, choose Th = % so that for any t > 15

A(AS(C), 1A4x(Co)) > (k —v)t — o] > Yt > o
Proposition A.6 then implies that for any ¢ > 0 there is some C' > 0 such that
1P5 (W it (Ci))e ™00l < O
for all t > T, which proves (5.7). We then conclude that the lemma holds with Ty = max(77,7%). O
Theorem 5.5. Suppose that 1) € Ran(Q). Then 1 € Hscat-

Proof. Since |J |J QD (C;)) is dense in Ran(2), it suffices to show that Q(Dy(C;)) C Hscat for all

€T k>0
k > 0. But this is immediate from Lemma 5.4 so long as m, e and v are chosen appropriately with
respect to k and dg is chosen to be less than min(k — m, kg”). O

Remark 5.6. The second claim in Theorem 5.3 and the above proof of Theorem 5.5 also show
that Ran(2) may be described without the parameter m as

QD) ={y e H |, C, L >0 so that V§ € (0,d0) and ¢ > 0 ||(PsWytout) — Id) || < Ct—¢}

but we prefer the given characterization as Hgcay because Hiyt must be defined in terms of m.
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5.2. Characterizing Ran(Q2)*. Recall that
Hin = {10 € H | Yo,m > 0,30 > 0 50 that V3 € (0,80) m |[Ps(Wat,mont) ]| = 0}

Theorem 5.7. Under the above definition, Ran(Q)" = Hiys.

Proof. For the inclusion Ran(Q)* C Hiu, take ¢ € Ran(Q)* and fix any v,m > 0 and § < m. For
any s >t > 0 we may write

1 PsWotamsout) V1> < (Ps(Wotmsout) ¥t 1r)
< (Q(s = 1) Ps(Wot.msout)thr, ¥e) + 1O I1(Q2(s — £) — Id) Ps(Wormsous ) ¥ |
= (" (s — 1) Bs(Wotmiou) ¥, ) + |91 (s — 1) — 1d) Ps(Wot miout )¢
= ()™ Ps(Wat msout ¥t ) + [[0[11 (s — ) = 1d) Ps(Wot gmiout ¥l
where we have used that
etHQ (s —t) = Q(s)etHo

Now by applying (5.3) from Lemma 5.2 to the second term, we get that for any s >t > 0, and
0<e<m-—9

“PCS(th,m;out)thQ < <Q(5)eitH0P6(th,m;out)d}t’ 1/)> + thﬂ + / HVX.Agw ||0P dw
t

for some constant C' that does not depend on t or s. Observe that because § < m, by Proposition
A3, Ps(Woyt.miout )V lies in D as does ettto py (Weat,msout)¥¢ since the free propagator does not alter
the momentum support of a state. Thus, with ¢ fixed, we may take the limit s — oo in the above
to obtain

HP6 (qut,m;out)wtuz < <QeitHOP6(th,m;out)¢ta ¢> + thé + / HVXAsw HOP dw
t

[ee)
=Ct !+ / 1V XA llop dw 7
t

by assumption (3.1) and the fact that ¢» L Ran(Q2). This proves the first inclusion.

Conversely, let 1) € Hing. We will show that ¢ L Q(Dg(C;)) for any k > 0,7 € Z and conclude by
density. Let ¢ € Q(Dg(C;)) for some k > 0,7 € Z and let m,e and v satisfy m,v,e € (0,k). Then
by Lemma 5.4 for ¢ sufficiently small there exists some T5(C;) > 0 such that there are constants
C >0 and ¢ > 0 so that

1P Wot,msout) — Id) gt || < Ct“r/llXAssVHopH@lldS
t

for all t > Tj.
Then we have that for any t > Ty

<¢7 90> = <P5(th,m;out)¢t7 90> + <¢t7 (PJ(th,m;out) - ld)§0t>
< IPsWotmiout) Vel 1]l + 11T (Es Vot msout) — Id) |

o
< HPs(th,m;outWtHHwH+Ct_£+/HXAESVHoprHdS
t
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Since ¥ € Hint, for the same v and m, and choosing § smaller if necessary, we have that
lim | Ps(Wotmiont)¢il| = 0
t—0o0

so we may conclude that

[e.e]
— t
(W, ) < [PsWotmout el oll + Ot~ + / Ixa. Vlopllipll ds =0
t

from assumption (3.1). Therefore, ¢ L ¢, as needed. O

5.3. Spatial characterizations of Hgscat and Hine. In this section, we show that for some systems
one can replace the microlocal descriptions of Hgeat and Hine with descriptions that are purely
spatial. Recall Theorem 3.3:

Theorem 3.3. Suppose that {C;}icz consists of half-spaces. Then with D = | J;cr D(C;) we have
that

(D) = (¢ € H[ v > 0, Jim [, el = 0}
— 00
D) = { € H | Vv >0, lim ||xa, | =0}
t—o0
Remark 5.8. The above theorem applies to potentials for which {C;};ez also contains cones of

aperture less than 7. In this case, one will have a spatial characterization only for those cones of
large enough aperture. See Example 2.5 for one such setting.

So far, we have described the set of scattering states Hgcat as those states which asymptotically
propagate into some cone C with outgoing momenta, that is, those that point into C. To obtain a
spatial characterization, it suffices to show that it is impossible for a state to propagate into C with
any other momentum localization if v = 5. For this, we begin by defining the incoming subset of
phase space for any collection of cones: let

Wnam;iﬂ(cx,f)’,'y) - {(yap) € R2d ‘ ye An(cx,f)’,v)7 —pEc A—m(cﬁ,’y)}

Wn,m;in = U Wn,m;in(ci)
1€l

See Figure 6. We show that asymptotically no state can concentrate in these subsets of phase space:
Proposition 5.9. For anyv >0, 0 <m <w, and 6 < *5™
(5.8) s-lim Ps(Wat miin)e ™ H = 0
t—o0
Proof. This proof is based on an argument of Enss recorded in [16]. For any ¢ € H we can write
”Pé(thm;in)eiitHwH < ”Pé(th,m;in)(eiitH - 6’“H°)¢H + HP6(th7m;in)eiitH07/’”
so to prove (5.8), it suffices to prove that for v, m, and § as above
(5.9) lim HPc?(thvm;in)(eiitH - 67itH0)HOp =0
t—o0
and

(5.10) s-lim Ps(Wot miin)e ™ 0H0 = 0
t—o00
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W, Z
n,m;out 7

FIGURE 6. Illustration of the phase space sets Wi, m:out(Ci) and Wy, .40 (C;): each
has space coordinates inside the black cone with momentum coordinates inside the
red /blue cone, respectively.

v—m

1
||P6(th7m;in)(e_itH - e_itHO)HOp = ||(eitH - eitHO)Pé(th,m;in)Hop

To prove (5.9), we write, for e <

t
— =) Py W) o < [ e (= H + Ho)e™™ 0 PaWotin) o
0
t t
< [ IVl + 3 [ s, e PoOVot i) o
0 0

o8] t
< [ Vlnduw 43 [ g, €0 PsOWotmin) an o
t 0

Now we note that for any cone C, 3

Q:—w(th,m;in(C:cﬂ;y)) ={y—wp| (y,p) € th,m;in(cx,ﬁ,'y)}
={y+wp|(y.p) € Au(Cs54).p € A-n(Ciiy)}
= Cu(Wot,—msout)

so that by Proposition 5.1

d(C_yy (Wt miin) s Ag(t+w)) = (vt —mw) —e(t+w) > (v —m — 2e)w
which is greater than dw because w < t, e < *™
to conclude that for any ¢ > 0 there is some C' > 0 such that

I, €O PsWotmsin)llop < Ot~

e(t+w)

from which (5.9) follows immediately when combined with the Enss condition (3.1).

19

, and 6 < 5™, Thus, we may apply Lemma A.5

To prove (5.10), we fix ¢ € H compactly supported and choose R so that supp¢ C Ay + Bg.

Then

| PsWatmsin)e” || = | PBsOWotmiin)e ™ 0 X g4 Br || < X ag+Bre™ " PsWotmsin) llop ¥
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Again by Proposition 5.1

v—m

d(€_tWot,msin), Ao + Bgr) > (v —m)t — R > t > ot

for t > U2_}fn . Therefore, we can apply Lemma A.5, to get that
X A0+ BT Ps (Wt msin) llop < C((v —m)t — R)~*
from which it follows that
lim Ps(Woytmin)e "0 =0
t—o00
Density establishes (5.10), thus proving the lemma in full. O
Proof of Theorem 3.3. The key point is that in this case
(5.11) Wimeout U Wamsin = Ap x RY
To see this, note that if C; = C, 5, and v = 5 then Cgﬁ C —Cy, since if y € ng we have
(,7) < cos(llyll =0 = (—y,7) = 0 = cos(+) |yl

The inequality is strict up to a set of zero measure. In particular,

m v
Afn(cﬁ’,’y) = C,Lcy’,y -+ mv C —C{jﬁ + —
so that (5.11) holds.

Now, fix ¥ € Hint and v > 0. Choose m < v and ¢ sufficiently small and apply Proposition 5.9
to see that

lim HP(?(-Avt X Rd)%” = lim HPci(th,m;out U th,m;in)wt“ =0
t—o00 t—o00
Since
g el < 11Ps (A X RO+ [y Po(ASy X B

and
1Ps(Ave x RNYy|| < [ XAgue il + | Ps(Ave x RY)xag, e

from Proposition A.4 we see that
A Dell +0(1) < [ P5(Aue RO < (X Az ]| + (1)
as t — oo. Therefore,
Hin, © {0 € H | Yo > 0, lim 4,84 = 0)
Conversely, if tlim X A,,%¢|| = 0 then by the above for any § > 0
— 00

lim || Ps( Ayt x R)aby|| =0

t—o0
and thus for any m >0

||P5(th,m;out)'¢t”2 = <P§(th,m;out)2'¢t7 1/}t> < <P6(~Avt X Rd)¢ta ¢t> H—OO> 0

This proves the opposite inclusion

(et | Vo> 0, imxa, el =0} C Hine

and allows us to conclude the equality of the two subspaces.
The same argument shows that

Hscat C {w eH | Jv > 0%1_{1(1) HXAf,tT/}tH = ()}
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because A¢, x RY C W¢

then 1) is orthogonal to H;nt since we have shown that any ¢ € Hiye must satisfy tlim x4, 0t] =0,
—00

t.miout fOr any m > 0. Furthermore, if tlgélo [x4¢,%t|| = 0 for some v > 0,

for all v > 0. Therefore, 1 € Hﬁt = Hgcat, thus proving the opposite inclusion and concluding the

1

proof. O

6. EXAMPLES

Example 2.1 (Single cone). Suppose that {C};cz consists of a single cone C = C, . Then
D = D(Cy,) and Theorem 3.2 gives the following microlocal description:

QD) = {¢ € H [3v,m, 8 > 0, so that V5 € (0,0) lim [(Ps([Aur(C) x A (C)])x]l = 0}
QD) = { € H | Yo,m > 0,35 > 0 so that V& € (0, o) Jim [ P5(Au(C) x Am(C))nl = 0}

This indicates that Q(D) consists of states which propagate into C with momenta in A,,(C). When
v < 3, this is the best description our theorems afford. It does not rule out a state in Q(D)* which
propagates into C, but with the wrong momenta and that thus could bounce off of the boundary
of C.

However, when v = 7, the potential is concentrated in a half-space and the Theorem 3.3 shows
that in fact

QD) = {v € H[3v >0, lim [xaz, (c)¢ll = 0}
QD) = {y € H | Vo >0, lim X%l = 0}

because in this case we have shown that it is impossible for a state to propagate into C with
momenta pointing away from C (this is the content of Proposition 5.9). Systems of this type, in
particular of a vacuum coupled to a crystal (that is, a periodic potential) are physically important
and have been studied, among elsewhere, in [7].

Example 2.2 (Non-convex cone). Let C = C, 5, for v > 7. As explained in the introduction, we

may choose {C};cz so that |J C; =C. It is easily verified that
€L

so the generalized Enss condition remains:
||VXAT(C)H0p = [Vxa.llop € Ll([oa 0),dr)
Theorem 3.3 shows that in fact

QD)={YpeH|Iv> O,tlim X ae, )l = 0}
—00
QD) = { € H | Vo >0 lim |xa, vl = 0}
—00

as one would expect.

Example 2.3 (Short-range scattering). As explained in the introduction, we may choose {C};er
so that A, = BE. Relative to this collection of cones, the condition (3.1) becomes the classical Enns
condition

IVxBllop € LH([0,00), dr)
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which is one of many short-range scattering assumptions in the literature. Here, D is in fact equal
to all of H. In this setting, Theorem 3.3 shows that

Ran(®) = (€ # [ F0> 0, Tin [[xp,, 4] = 0}

Ran(Q)* = {¢ € H | Vv > 0, lim |[xpg,¥]| = 0}

This result may be contrasted with the usual asymptotic completeness statement for short-range
scattering, which is

Ran(Q) = H(H)
Ran(Q)* = Hpp(H)

This latter description may be connected to the dynamics of H via the RAGE theorem [2, 14],
which is a crucial ingredient in the original argument of Enss. A standard formulation of the
RAGE theorem (see for example [17]) is

1

T
Ho(H) = (v # | Jim tiw 7 [ |va,villde = 0)
0

Hpp(H) ={¢ € H| lim sup ||xpgt|dt = 0}
n—oo tZO
In particular, the space variable n is decoupled from ¢, whereas in order to get the spatial description,

we fixed n = vt for some velocity v.

Example 2.4 (Subspace potential). Let S, be the points within distance r from some fixed subspace
of R%. We explained in the introduction that S, may be written as A¢ for some appropriately chosen
collection of cones. In this setting, D = H and Theorem 3.3 shows that if

IVxsellop € LH([0, 00), dr)

then

Ran(Q) = {¢ € H | v >0, lim [|xs,,9:[| = 0}
Ran(Q)* = {y € H | Vo > 0, lim |[xsg, vl = 0}
which recovers the main result of [3].

Example 2.5 (Broken subspace). In this case, {C};c7 consists of two cones C; and Ca, the first
with 71 < § and the second with vo = 7 — 1. Let D1 = D(C1) and D3 = D(Cz2) be the domains of
Q) corresponding to each cone. Then relative to C; we obtain only a microlocal description

Q(Dl) = {w eH | Jv,m,dg > 0 so that Vd € (0750)1‘,11%%10 ||(P5([Avt(Cl) X C1]0)¢tH = 0}

QD) = {¢p € H | VYo,m > 0,36 > 0, so that V5 € (0,dp) Jim [ P5(Aue(C1) x A (C1))nl = 0}
whereas for the second cone we obtain a purely spatial description, as seen in Example 2.2 above
D) = {y € H [ Fv >0, lim [xa,cp)¥ell = 0
UD)t ={yp e H |V > 0, lim |[xag, (co)¥ll = 03

In other words, any state which propagates into the larger cone Cy at a linear rate must be a
scattering state, but for C; this is only the case for states with momenta which also point into Cy.
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APPENDIX A. EXISTENCE OF THE POVM P;

Proposition A.1. There exists a Positive Operator Valued Measure (POVM), Ps, defined on the

phase space Rg X ]Rg, with the following properties, for any E C R2® Borel
(1) (Observable) Ps(R??) = id.
(2) (Momentum localization) Let B C R% and D C R be Borel sets such that d(B, D) > 6.

Then for any E C R x B Borel and v € H such that suppzﬁ cD
Ps(E)y =0

(8) (Approzimate space localization) Let A C R? and D C R? be Borel sets so that d(D, A) > 0.
Then for any £ > 0 there exists some constant C' > 0 depending only on ns so that for all
ECAxR?

1P5(E)xpllop < Cld(A, D))"

(4) (Microlocal non-stationary phase estimate) Let €(E) C R? denote the classically allowed
region associated to E C R?? at time t:

() ={z+tp|(z.,p) € E}
Let F C R® be Borel. For any £ > 0 there exists C > 0 such that
Ixre™ ™10 Ps(E)|lop < Cd([t])~*

for all t such that d(t) := d(&(E), F) > 6|t
(5) (Spatial non-stationary phase estimate) Let {Ay};>0 be collections of Borel subsets of RY.
Then for any ¢ € S such that suppp € D Borel, £ > 0, and € > 0 there exists some
constant C(1, €, e,6) > 0 such that

[ Ps(Ar x RY)e™"Hogp]| < Ot~
for all t such that d(As, tD) > et.

Proof. To this end, we will use the phase space observable formalism developed in [4, 6] and used
in [3].

Choose n € S, such that ||n|| = 1 and supp7n C B;. Let ns be such that 7s(p) = ¢
rescaling of 7, so that supp7s C Bs and ||ns|| = 1.

Now define the following family of coherent states by translating ns in phase space:

d
2

ST

(%), a

—iz€ o

ns(€ —p)

We use this to define a family, depending on ¢ > 0, of positive-operator-valued measures: for any
E c R?? Borel and ) € H let

Pa(EW = (27r)_d ﬂ <771’,p;57 ¢> Nx.p;s dx dp
E

ﬁa},p;é(g) =e€

The various properties of Ps are proved in a series of propositions below.
In Appendix A of [3] we proved the following properties of Pj:

Proposition A.2 (Observable). For any § > 0 we have Ps(R??) = id.

Proposition A.3 (Momentum localization). Let B C R? and D C R? be Borel sets such that
d(B,D) > 6. Then for any E C R? x B Borel and v € H such that suppt) C D

Ps(E)Y =0
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Proposition A.4 (Approximate space localization). Let A C R? Borel and any set D C R% Borel
such that d(D, A) > 0, for any £ > 0 we have some constant C > 0 depending only on ns so that

1P5(A x R)xpllop < Cld(A, D))~

Finally we prove two estimates relating Ps to the free propagator e *H0 both based on the
principle of of non-stationary phase. The first is similar to Lemma 2 of Theorem XI.112 in [13],
but adapted to Ps. This lemma and its proof are similar to Lemma 3 in [22].

Lemma A.5 (Microlocal non-stationary phase estimate). Let €;(E) C R? denote the classically
allowed region associated to E C R?? at time t:

& (E) ={z+tp|(z,p) € E}
Let F C RY be Borel. For any ¢ > 0 there exists C > 0 such that
Ixpe™ 0 Py(E)|op < Cd(t])~*
for all t such that d(t) := d(€(E), F) > d[t]|.

Proof. We start by noting that for any ¢ € ‘H, by the boundedness of Pj

|P(E)Y|? = (&, PA(E)Y) < (1, P(E)) = (2m) ¢ // (n, ) (1, ) dwdp = (2m) // | (n, ) |Pdadp
E

E

We will estimate the norm of the adjoint operator Ps(E)e!Hoy . For ¢ € H, by the above inequality

| Py (E)etHox b2 < (27~ // | (g €O x 15 2 iz lp
E
— (2m) // | / o, ()xr)(y) dyl? do dp
E Rd

We now compute

e,
<
8

(e—itHonxyp;(s)(y) = (27)~ /ei€~( - )—it§ﬁ5(§ —p)d§

Rd

. . 2 . . 2 . . . 2 .
— P (g [ i e e) g — o O (i) g (o 4 )
Rd
Recalling that for any (x,p) € E and y € F, |y — (x + tp)| > d(t), we see that
| [ o sxe 0)ie) dyl = | [ o)y~ (o -+ t0))xe () 0(y) dy
R4 R4

= | / e~ PV (e=itHons) (y — (z + D)) X{ly—(a+1p)>d0)} W) XF (W)Y (y) dy|
Rd

= (2m) 2| F[(e 7 Hony) (- = (2 + D)X (| —(zstm>a Y ()xr (D)) (P)]
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We now perform the change of variables 2’ = = + tp and apply the Plancharel theorem to see that

(2m)~¢ // | / e=tHon, b5 ()X (Y)Y (y) dy|* da dp
E Rd

< (27T)_d//(27r)df[(6“Hons)(' = (@ )X~ p)>dee (Oxr ()P ))(p)]* dz dp

]R2d
=a/=c+ip // | Fl(e=Hons) (- — 2" )x{—a'>ae} ()xe ()Y ()] (p)]? da’ dp
de
— // e om) (y — )X 1y—or sty ()1 )(y) 2 da dy
RZd
- / e () ()P / (e ong)(y — o) da’ dy < [ / (e~ itHons) (a')|2 da’
Rd {z'|ly—2'|>d(t)} B;(t)

Since d(t) > 6t by assumption and supp 7 C By, we see that if 2’/ € Bfl(t) then %/ ¢ By so we may
apply Lemma 4.2 to see that for any ¢ > 0 there exists C > 0 depending only on 7 and ¢ such that

|(e=Hons)(y — a”)[?dz’ < C / (1+ lla'|| + )~ da” < C(1+d(t) + |t)) =
{2/ |ly—='|>d(t)} Bt
Thus, we conclude that
1Ps(E)e™ x|l < C(L+ [ +d(#) =[]
as claimed. g
The second lemma is essentially a standard non-stationary phase estimate on e *Ho:
instance, the Corollary to Theorem XI.14 from [13].

see, for

Proposition A.6 (Spatial non-stationary phase estimate). Let {A;}+>0 be a collection of Borel
subsets of RY. Then for any p € S such that supp ¢ € D Borel, £ > 0, and € > 0 there exists some
constant C (1,0, e,8) > 0 such that

1Ps(Ar x RY)e™"Hog|| < Ct*
for all t such that d(As, tD) > et.
Proof. Let ¢ € S and £, > 0 and D be as above. Then we can write
1P5(Ar x RY) e 0pl| < || Ps(Ar X RY)X (4,18, e llopllell + I Xai+5, 67 0]
Since d(Ay, [Ar + B%t]c) > 5t, by Property A.4 we get that
| Ps(Ag x Rd)X[AtJrB%t}CHop <ct
We can write
amge ol = [l () Py
At+Bg
Next, we note that

d(A; + Bz, tD) > d(Ay,tD) — gt > %t
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So we conclude that y € A; + B%t implies that ¥ ¢ D, and so by Lemma 4.3 we get

o™ (y)] < COL+ Iyl + )~

Therefore,
a5y e 00| < (14 1)~
as needed. O
With this lemma, we have proved all the claimed properties of Ps. O
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