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Abstract. We study the scattering properties of Schrödinger operators with potentials that have
short-range decay along a collection of rays in Rd. This generalizes the classical setting of short-range
scattering in which the potential is assumed to decay along all rays. For these operators, we give
a microlocal characterization of the scattering states in terms of the dynamics and a corresponding
description of their complement. This shows that any state decomposes into an asymptotically free
piece and a piece that may interact with the potential for long times. We also show that in certain
cases these characterizations can be purely spatial.
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1. Introduction

In this paper, we study the scattering properties of Schrödinger operators with potentials that
have short-range decay along a collection of rays in Rd. This generalizes the classical setting of short-
range scattering in which the potential is assumed to decay along all rays. By now, the scattering
theory of short-range potentials is classical, but much less is known about the anisotropic setting
in which the behavior of the potential at infinity depends on the direction. Here, we study how
purely geometric constraints on the potential affect scattering. Namely, we consider real-valued
potentials that are concentrated near a subset of Rd with complement containing rays to infinity.
We show that microlocally the scattering states are precisely those that concentrate along these rays
in phase space. States in the complement of the scattering states, called the “interacting subspace”
below, thus must avoid these rays in a suitable sense. We remark that unlike in the short-range
theory, these interacting states need not be pure point so that they may form interesting examples
of continuous states satisfying some geometric confinement condition - see the discussion of surface
states in [3] for several examples. Besides boundedness and the aforementioned geometric condition,
we make no other assumptions on the potential so that in particular it may be very rough or have
wild behavior at infinity in some directions.

Let us now recall the classical picture of short-range scattering in order to situate our result. We
consider a self-adjoint Schrödinger operator of the form

H = H0 + V

on H = L2(Rd) where H0 = −1
2∆ and V is a real-valued bounded multiplication operator. There

are a variety of decay conditions one can impose on V in order to consider it short-range (see [1]
and the references therein), but we focus on the Enss condition

∥χBc
r
V ∥op ∈ L1([0,∞), dr)(1.1)

where χ is the indicator function of a subset of Rd and Br is the ball of radius r in Rd. This
condition was originally posited in [9], in which it was proven that the wave operators

Ω± = s-lim
t→∓∞

eitHe−itH0

whose ranges consist of the scattering states, exist on all of H, and are asymptotically complete.
This means that

H = Ran(Ω±)⊕Hpp(H)

or equivalently

Hc(H) = Ran(Ω±)(1.2)

The proof of this result due to Enss [9], as well as its refinement by Davies [5], relies on studying
the phase space localization of a state as it evolves under H. Ultimately, the scattering states are
characterized dynamically via the celebrated RAGE theorem [2, 14].

Motivated by this classical theory, in [3] we studied the scattering properties of potentials assumed
to decay only in some coordinate directions. Formally, if Sr is the set of points of a distance less
than r from some subspace of Rd then we studied potentials satisfying the subspace Enss condition

∥χSc
r
V ∥op ∈ L1([0,∞), dr)

In this setting, we showed that Ω− exists for all ψ ∈ H and that the orthogonal complement of its
range is given by the set of surface states

Hsur = {ψ ∈ H | ∀v > 0, lim
t→∞

∥χSc
vt
e−itHψ∥ = 0}

so that

H = Ran(Ω−)⊕Hsur
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Thus, even though asymptotic completeness in the sense of (1.2) does not generally hold in this
setting, we were still able to provide a dynamical characterization of the non-scattering states,
albeit not a spectral one. That work proceeds via the phase space scattering methodology of Enss
and makes heavy use of the subspace structure of the potential and the tensor product structure of
Rd. However, one expects to have a robust theory of scattering for a larger class of geometrically
constrained potentials. Indeed, a potential that admits asymptotically free trajectories should
produce scattering states, at least intuitively. Classically, one expects that a particle moving under
the influence of a potential may escape along some ray so long as the strength of the potential
attenuates fast enough along that ray. Here, we study the quantum analog of this phenomenon:
we let V decay inside a (possibly infinite) collection of convex cones. For a ray in the interior of
a cone, the distance to the boundary of the cone increases along the ray. Thus, the use of cones
enforces that the effect of the potential must decrease along any classically free trajectory, while
the convexity is a technical convenience.

In the anisotropic setting and others with multiple channels of scattering, the main challenge is
that not all continuous states will have their dynamics governed by the RAGE theorem, which is the
starting point of the Enss method. For time-dependent problems, some authors have circumvented
this difficulty by defining the space of scattering states via their dynamical properties and then,
when possible, showing that these states are precisely those in the range of a wave operator. Though
the class of potentials considered (time-dependent and spatially decaying in all directions) are quite
different, the works of Kitada and Yajima [12] and Yafaev [20] are influential to our methodology.
In the former, a microlocal characterization of the set of scattering states is developed while in the
latter the author defines the scattering states in analogy to the RAGE theorem as those that leave
any compact set, in the appropriate sense.

Before specifying the class of V more precisely, we mention some lines of inquiry that are con-
nected to our results. Previously, Yafaev et al [8, 18, 21] made a deep study of certain types of
anisotropic potentials, as was recalled in Section 6.3 of [3]. In this series of papers, the authors
considered potentials that decay short-range in some coordinate directions, but slower in others.
They constructed many examples of potentials in this class for which asymptotic completeness does
not hold and proved the existence of modified wave operators for the states in the complement of
the range of the standard wave operator. Thus, they show that multiple channels of scattering may
appear in the presence of anisotropy if the potential is chosen carefully. In contrast, the present
paper is concerned with a much more general class of anisotropic potentials. Our main theorems
provide constraints on how asymptotic completeness may fail by showing how states in non-free
channels must behave micro-locally, but we do not show that any specific potential actually exhibits
this failure (for such examples, see Section 6 of [3] or [19]). And so, the potentials considered in
[18, 19] fall within the purview of our results and provide important demonstrations of the phenom-
enon we wish to study. Furthermore, previous work has concentrated on anisotropy with respect to
orthogonal subspaces of Rd, while our goal is to study potentials that have arbitrary decay along
each ray towards infinity.

Less closely related, but still relevant is the recent progress in understanding how the geometry
of the potential affects the spectrum of H, especially in the study of geometrically-induced bounds
states. One representative example is [10] in which a condition is given for the existence of bound
states due to singular potentials supported on certain curves in R2. Where our theorem applies
to these settings, such states will appear in the interacting subspace Hint (to be defined below).
Beyond this, one may place the geometry in the underlying space instead of in the potential by
studying short-range scattering on a manifold as in [11].

There are also many directions for further research suggested by our results. First, it is quite
natural to ask whether one can give some sort of spectral criteria for the presence of interacting
states since at present our characterization is purely dynamical. Furthermore, under additional
assumptions on the potential, the dynamics or spectral properties of the interacting states are
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themselves worth investigating. Perhaps most importantly, if V is partially (quasi-)periodic, one
can ask whether the potential acts as a waveguide in the sense that it produces ac states that
propagate in its vicinity (see [3] for a partial answer to this question). Given the presence of
such ac states, one may ask many questions about their dynamics, for instance, if they exhibit
anisotropic ballistic transport and whether they satisfy anisotropic dispersive estimates. In an
unrelated direction, it would be interesting to construct potentials with conical decay that produce
singular continuous states and to study their dynamics. More physically, one could study conical
scattering with periodic background, i.e by replacing H0 with H0 +W where W is periodic. This
would model a crystal with a conical defect. The Enss method has been employed for periodic
background [16], but the generalization to conical decay presents some technical challenges.

2. Model

As mentioned above, we consider a self-adjoint operator H on H = L2(Rd) of the form

H = H0 + V(2.1)

where H0 = −1
2∆ and V is a real-valued bounded potential that decays inside a collection of convex

cones.
To be more precise, let us first fix some notation. For any x ∈ Rd, v⃗ ∈ Sd−1, and γ ∈ (0, π) let

Cx,γ,v⃗ = {y ∈ Rd | ⟨(y − x), v⃗⟩ > cos(γ)∥y − x∥}

be the open cone with vertex x in the v⃗ direction with aperture 2γ. Since we will often work with
cones with vertex at the origin, we let Cv⃗,γ denote C0,v⃗,γ . Unless otherwise specified, all cones will
be assumed to be convex or equivalently have γ ≤ π

2 . Furthermore, for any cone C, let Ar(C) be
the set of points a distance greater than r > 0 from Cc:

Ar(C) = {y ∈ Rd | d(y, Cc) > r}

See Figure 1. We will use the shorthand Ac
r(C) = [Ar(C)]c.

For some collection of convex cones {Ci}i∈I , let

Ar =
⋃
i∈I

Ar(Ci)

Cc
x,v⃗,γ

x

γ
v⃗

Ar(Cx,v⃗,γ)

γ
r

r
si
n
(γ

)

Figure 1. Illustration of Cx,v⃗,γ and Ar(Cx,v⃗,γ) for d = 2: in orange we have the
complement of Cx,v⃗,γ , which is where the potential is concentrated. In black we have
the set Ar(Cx,v⃗,γ), in red we indicate v⃗ and γ.
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We assume that V satisfies the following generalized Enss condition with respect to {Ci}i∈I :
∥χArV ∥op ∈ L1([0,∞), dr)

which should be compared to (1.1). Note that Ar depends implicitly on the collection {Ci}i∈I and
therefore this condition depends only on the geometry of V .

We will study the scattering properties of H via the (positive time) wave operator Ω−, which
we simply write as Ω. Our results may be easily reformulated for Ω+, but we focus our attention
on the limit t→ ∞. Before stating a precise theorem (see Section 3), let us give a few examples of
the geometries we plan to consider and explain how they may be described via a union of convex
cones.

Example 2.1 (Single cone). It is already interesting to consider V which decays in some convex
cone C, that is, {Ci}i∈I consists of a single cone. For such potentials, we will show that Ran(Ω)
consists of states which evolve into C with momenta lying in C whereas Ran(Ω)⊥ consists of states
which may interact with V for arbitrarily long times. These characterizations are microlocal in the
sense that they depend on the position and momentum localization of a state.

Example 2.2 (Non-convex cone). The use of convex cones (that is, γ ≤ π
2 ) is merely a technical

convenience: a cone with γ > π
2 can be described as an intersection of a collection of half-spaces,

and therefore falls within the purview of the analysis below. To see this, say C = C0,v⃗,γ for γ > π
2

and define

Sv⃗ = {w⃗ ∈ Sd−1 | ⟨v⃗, w⃗⟩ = cos(γ − π

2
)}

the conic envelope. Then one may check that

C =
⋃

w⃗∈Sv⃗

C0,w⃗,π
2

Example 2.3 (Short-range scattering). The generalized Enss condition encompasses the classical
Enss condition (1.1) for short-range potentials. Indeed, one may study short-range potentials in
the present setting by writing

Bc
r =

⋃
v⃗∈Sd−1

Ar(Cv⃗,π
2
)

which may be readily verified.

Example 2.4 (Subspace potentials). In [3], we studied potentials that are supported near a sub-
space of Rd, as explained in Section 1. Using the product structure of this geometry, we proved
that Ω exists for all ψ ∈ H and gave a purely spatial characterization of Ran(Ω)⊥. We will show
that one may recover these results in the present setting since by similar considerations as in the
above example, it is easy to see that

Sc
r =

⋃
v⃗∈0⃗k×Sd−k−1

Ar(Cv⃗,π
2
)

where 0⃗k = (0, . . . , 0) ∈ Rk.

Example 2.5 (Broken subspace). A variant of the above example is a “broken subspace,” written
here in d = 2 for simplicity: consider v⃗1, v⃗2 ∈ S1 and let r⃗1 and r⃗2 be the rays {tv⃗1 | t ≥ 0} and
{tv⃗2 | t ≥ 0}, respectively. Then consider V such that

suppV ⊂ Tr := {x ∈ R2 | d(x, r⃗1 ∪ r⃗2) < r}
We may accommodate such potentials by observing that

Tr = (Crv⃗∗,v⃗∗,γ ∪ C−rv⃗∗,−v⃗∗,π−γ)
c
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where v⃗∗ =
v⃗1+v⃗2

∥v⃗1+v⃗2∥ and γ is half of the (non-obtuse) angle between v⃗1 and v⃗2, see Figure 2. In this

example, one of the cones is convex while the other is not.

v1

v2

v⃗∗ γ

−v⃗∗
π − γ

2rV

Figure 2. The geometry of the broken subspace: in orange, we have the vectors
v1, v2, in red we have the vectors v⃗∗ and −v⃗∗, in blue we have the outline of Tr,
which contains suppV .

3. Definitions and Results

3.1. Notation and Conventions.

• We let H denote L2(Rd) with norm denoted ∥ · ∥ and use the convention that its inner
product ⟨·, ·⟩ is anti-linear in the first argument and linear in the second.

• The symbols ∥ · ∥ and ⟨·, ·⟩ will also be used for the norm and inner product on Rd.
• d(·, ·) is used for the distance between points or subsets of Rd.
• Br will mean the ball of radius r centered at the origin in either Rd or H depending on
context.

• For A ⊂ Rd, Ac denotes its complement.
• χA will mean the indicator function of a set A ⊂ Rd.
• A ⋐ B denotes that A is compactly contained in B.
• S = S(Rd), the Schwartz space.
• We use the following convention for the Fourier transform of f ∈ H:

f̂(ξ) = F(f)(ξ) = (2π)−
d
2

ˆ

Rd

f(x)e−ixξ dx

F−1(f̂)(x) = (2π)−
d
2

ˆ

Rd

f̂(ξ)eixξ dξ

• For some cone Cx,v⃗,γ and r > 0, we define Ar(Cx,v⃗,γ) ⊂ Rd to be the set of all points at a
distance greater than r from Cc

x,v⃗,γ

Ar(Cx,v⃗,γ) = {y ∈ Rd | d(y, Cc
x,v⃗,γ) > r}

As explained below,

Ar(Cx,v⃗,γ) = Cx,v⃗,γ +
r

sin(γ)
v⃗
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which we will use to define Ar for r ≤ 0. We will also use the shorthand

Ac
r(Cx,v⃗,γ) = [Ar(Cx,v⃗,γ)]c

• We will let

Ar =
⋃
i∈I

Ar(Ci)

for {Ci}i∈I some collection of cones.
• For some cone Cx,v⃗,γ and k > 0 we let

Dk(Cx,v⃗,γ) = {ψ ∈ S | supp ψ̂ ⋐ Ak(Cv⃗,γ)}

D(Cx,v⃗,γ) = {ψ ∈ H | supp ψ̂ ⊂ Cv⃗,γ}

• For the definition of Pδ(·) see Appendix A.
• ψt will always denote the evolution of ψ under H at time t:

ψt = e−itHψ

• We will also use the following notation:

Ω(t) = eitHe−itH0

Ω∗(t) = eitH0e−itH

and

Ω = Ω− = s-lim
t→+∞

eitHe−itH0

with domain D that will be described below.
• Ran(Ω) will refer to the range of Ω on its natural domain D.

3.2. Definition of the scattering and interacting subspaces. In order to give the aforemen-
tioned microlocal characterizations, we will need a suitable way to describe a state’s localization in
phase space. To this end, for every δ > 0, we define a positive operator-valued measure (POVM),
denoted Pδ, on the phase space Rd

x × Rd
p, with the following properties:

(1) (Observable) Pδ(R2d) = id.
(2) (Momentum localization) Let B ⊂ Rd and D ⊂ Rd be Borel sets such that d(B,D) > δ.

Then for any E ⊂ Rd ×B Borel and ψ ∈ H such that supp ψ̂ ⊂ D

Pδ(E)ψ = 0

(3) (Approximate space localization) Let A ⊂ Rd and D ⊂ Rd be Borel sets such that
d(D,A) > 0. Then for any ℓ > 0 there exists some constant C > 0 depending only on
ηδ so that for all E ⊂ A× Rd

∥Pδ(E)χD∥op < C[d(A,D)]−ℓ

(4) (Microlocal non-stationary phase estimate) Let Ct(E) ⊂ Rd denote the classically allowed
region associated to E ⊂ R2d at time t:

Ct(E) = {x+ tp | (x, p) ∈ E}

Let F ⊂ Rd be Borel. For any ℓ > 0 there exists C > 0 such that

∥χF e
−itH0Pδ(E)∥op ≤ Cd(|t|)−ℓ

for all t such that d(t) := d(Ct(E), F ) > δ|t|.
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(5) (Spatial non-stationary phase estimate) Let {At}t≥0 be a collection of Borel subsets of Rd.
Then for any φ ∈ S(Rd) Schwartz such that supp φ̂ ⋐ D Borel, ℓ > 0, and ε > 0 there

exists some constant C(ψ, ℓ, ε, δ) > 0 such that

∥Pδ(At × Rd)e−itH0φ∥ < Ct−ℓ

for all t such that d(At, tD) > εt.

We refer the reader to [4] for the definition of a POVM and relegate the construction of a POVM
satisfying the above properties to Appendix A.

To specify the domain of Ω, we let

D(Cx,v⃗,γ) = {ψ ∈ H | supp ψ̂ ⊂ Cv⃗,γ}

In particular, D(Cx,v⃗,γ) is independent of the vertex x. For some collection of cones {Ci}i∈I , we let

D =
⋃
i∈I

D(Ci)

For n > 0 and some cone Cx,v⃗,γ , we let the corresponding outgoing subset of phase space be the
set of points with space coordinates in An(Cx,v⃗,γ) and momentum coordinates in Cv⃗,γ :

Wn;out(Cx,v⃗,γ) = {(y, p) ∈ R2d | y ∈ An(Cx,v⃗,γ) and p ∈ Cv⃗,γ}
and let the total outgoing subset be

Wn;out =
⋃
i∈I

Wn;out(Ci)

We also define a variant of Wn;out(C) which is restricted away from 0 in the momentum variable:

Wn,m;out(Cx,v⃗,γ) = {(y, p) ∈ R2d | y ∈ An(Cx,v⃗,γ) and p ∈ Am(Cv⃗,γ)}
and its respective total set

Wn,m;out =
⋃
i∈I

Wn,m;out(Ci)

See Figure 3.

Ci

γ

An(Ci)

x

Wn;outWn,m;out

Figure 3. Illustration of the phase space sets Wn;out(Ci) and Wn,m;out(Ci): space
coordinates are inside the black cone while momentum coordinates point inside the
red/blue cone, respectively.
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This allows us to define the scattering subspace

Hscat = {ψ ∈ H | ∃v,m, δ0 > 0 so that ∀δ ∈ (0, δ0) lim
t→∞

∥(Pδ(Wvt,m;out)− Id)ψt∥ = 0}

which we will prove below is dense in Ran(Ω) := Ω(D).

Remark 3.1. The above characterization of Ran(Ω) is similar to those given in [12] and [22] in
the short-range setting.

We also define the interacting subspace

Hint = {ψ ∈ H | ∀v,m > 0,∃δ0 > 0 so that ∀δ ∈ (0, δ0) lim
t→∞

∥Pδ(Wvt,m;out)ψt∥ = 0}

which consists of states that can interact with V for arbitrarily long times. We will show that this
subspace is equal to Ran(Ω)⊥.

With these definitions, we may state our main theorem:

Theorem 3.2. Let H = H0 + V where H0 = −1
2∆ and V is a real-valued multiplication operator

such that

• V ∈ L∞(Rd)
• There exists a collection of cones {Ci}i∈I for which V satisfies the generalized Enss condition

∥χArV ∥op ∈ L1([0,∞), dr)(3.1)

Then

(i) (Existence) For all ψ ∈ D the limit Ωψ exists. Furthermore, σ(H0) ⊂ σac(H).
(ii) (Dynamical description of scattering states and their complement) We have

Ω(D) = Hscat

Ω(D)⊥ = Hint

Furthermore, we also show that for half-spaces there are spatial characterizations of Ω(D) and
Ω(D)⊥:

Theorem 3.3. Suppose that {Ci}i∈I consists of half-spaces. Then we have that

Ω(D) = {ψ ∈ H | ∃v > 0, lim
t→∞

∥χAc
vt
ψt∥ = 0}

Ω(D)⊥ = {ψ ∈ H | ∀v > 0, lim
t→∞

∥χAvtψt∥ = 0}

Remark 3.4. In fact, using a small variation of the proofs below, one can give slightly different
descriptions in Theorem 3.2:

Ω(D) = {ψ ∈ H | ∀n > 0,∃m, δ0 > 0, so that ∀δ ∈ (0, δ0) lim
t→∞

∥(Pδ(Wn,m;out)− Id)ψt∥ = 0}

Ω(D)⊥ = {ψ ∈ H | ∀m,n > 0,∃δ0 > 0 so that ∀δ ∈ (0, δ0) lim
t→∞

∥Pδ(Wn,m;out)ψt∥ = 0}

In this description, the space and time variables are decoupled completely, which gives some further
insight into the behavior of the interacting states. Since Theorem 3.3 requires taking n = vt, we
use the corresponding microlocal definition in Theorem 3.2.

4. Existence of the Wave Operator Ω

First, we record a geometric fact:

Proposition 4.1. We may write Ar(Cx,v⃗,γ) = Cx,v⃗,γ + r
sin(γ) v⃗.

Proof. By projecting to any plane containing v⃗, the claim is clear from Figure 1. □
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For r ≤ 0 we will use the above as the definition of Ar(C). We now use the following direct
application of the Corollary to Theorem XI.14 from [13]:

Lemma 4.2. Let u ∈ S and let G be an open set such that supp û ⋐ G . Then for any ℓ ∈ N, there
is a constant C > 0 depending on ℓ, u, and G so that

|e−itH0u(x)| ≤ C(1 + ∥x∥+ |t|)−ℓ

for all pairs (x, t) such that x
t ̸∈ G.

We let

Dk(Cx,v⃗,γ) = {ψ ∈ S | supp ψ̂ ⋐ Ak(Cv⃗,γ)}

Note that the set Dk(Cx,v⃗,γ) is independent of the vertex x and that
⋃
k>0

Dk(Cx,v⃗,γ) is dense in

D(Cx,v⃗,γ).
We use this to prove the following proposition which will be useful here and in the sequel.

C

An(C)

x

supp(ψ̂)

Figure 4. Illustration of the momentum of ψ̂, in red, with respect to An(C), in
orange. The dashed blue line corresponds to a classic trajectory from x with mo-
mentum at the edge of the red cone.

Proposition 4.3. Let C be any cone and k > 0. Then there exists c(C) > 0 such that for all
ψ ∈ Dk(C) and any ℓ > 0 there exists C(ψ, ℓ) > 0 such that

∥χAc
n(C)e

−itH0ψ∥ ≤ C(1 + |t|)−ℓ

for any pair of (n, t) ∈ R2 satisfying

c < kt− n(4.1)

Proof. Write C = Cx,v⃗,γ . In order to apply Lemma 4.2, we take G = Ak(Cv⃗,γ). Thus, we must show
that so long as kt − n is sufficiently large, for all y ∈ Ac

n(Cx,v⃗,γ), we have that y
t ∈ Ac

k(Cv⃗,γ) or
equivalently

tAk(Cv⃗,γ) ⊂ An(Cx,v⃗,γ)
Using Proposition 4.1 and the fact that Cv⃗,γ is invariant under scaling, we see that we must show
that

Cv⃗,γ +
kt

sin(γ)
v⃗ ⊂ x+ Cv⃗,γ +

n

sin(γ)
v⃗ ⇐⇒ Cv⃗,γ +

kt− n

sin(γ)
v⃗ − x ⊂ Cv⃗,γ(4.2)
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C0,v⃗,γ

Akt(C0,v⃗,γ)

An(Cx,v⃗,γ)

Cx,v⃗,γ

Figure 5. Illustration of the inclusion (4.2)

In words, we must show that the cone Cv⃗,γ shifted by the vector kt−n
sin(γ) v⃗ − x is contained in Cv⃗,γ ,

which will be the case as long as this vector lies in the cone. But this is clearly true if kt − n is
large enough with respect to fixed x i.e if (4.1) holds.

Therefore, we may apply Lemma 4.2, to see that for any ℓ > 0

|e−itH0ψ(y)| ≤ C(1 + ∥y∥+ |t|)−ℓ

for all y ∈ Ac
n(Cx,v⃗,γ) where C is independent of y and t. Choosing ℓ large enough, we get that

∥χAc
n(Cx,v⃗,γ)e

−itH0ψ∥2 ≤ C

ˆ

Ac
n(Cx,v⃗,γ)

(1 + ∥y∥+ |t|)−ℓ dx < C(1 + |t|)−ℓ+d

(4.3)

as needed. □

This is already enough to prove the existence of the wave operators:

Proof of part (i) of Theorem 3.2. By Cook’s method (see [13] Theorem XI.4), it suffices to show

that for all ψ in some dense subset of D =
⋃
i∈I

D(Ci)

∞̂

0

∥V e−itH0ψ∥ dt <∞

We will take as our dense subset
⋃
i∈I

⋃
k>0

Dk(Ci).

For any i ∈ I and any k > 0, write Ci = Cx,v⃗,γ , let 0 < ε < k, and let ψ ∈ Dk(Cx,v⃗,γ). We can
then write

∥V e−itH0ψ∥ ≤ ∥V χAεte
−itH0ψ∥+ ∥V χAc

εt
e−itH0ψ∥

≤ ∥V χAεt∥op∥ψ∥+M∥χAc
εt(Ci)e

−itH0ψ∥

as Ac
εt ⊂ Ac

εt(Ci). The first term is L1([0,∞), dt) by the assumption (3.1) whereas we will estimate
the second term via Proposition 4.3. For this, let c0 = c0(Cx,v⃗,γ) be the constant from Proposition
4.3 and let T0 = c0

k−ε . By Proposition 4.3 with n = εt, we see that for any ℓ > 0 and t > T0 there
is some C > 0 so that

∥χAc
εt(Ci)e

−itH0ψ∥ ≤ C(1 + t)−ℓ(4.4)
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uniformly in t. It follows immediately that ∥V e−itH0ψ∥ is integrable on [0,∞) as needed.
Furthermore, since σ(H0|D) = σ(H0), the intertwining property of Ω implies that σ(H0) ⊂ σac(H)

as claimed. □

5. Descriptions of Ran(Ω) and Ran(Ω)⊥

In this section, we give descriptions of Ran(Ω) and its orthogonal complement in terms of the
dynamics of H. In particular, we show that states in these subspaces may be characterized by their
location in phase space as t→ ∞. Here, as before, Ran(Ω) indicates the range of Ω on its natural
domain D, as defined in the previous section.

5.1. Characterizing Ran(Ω). Recall the definition of the outgoing set associated with a single
cone Cx,v⃗,γ

Wn;out(Cx,v⃗,γ) = {(y, p) ∈ R2d | y ∈ An(Cx,v⃗,γ) and p ∈ Cv⃗,γ}

and that Wn,m;out =
⋃
i∈I

Wn,m;out(Ci).

We again record some purely geometric facts:

Proposition 5.1. Let C be any convex cone and let Ac
r be defined relative to a collection of cones

that contains C.
(1) For any n, t, r ≥ 0 and m ∈ R

d(Ct(Wn,m;out(C)), Ac
r(C)) ≥ n+mt− r

(2) For any n, t, r ≥ 0 and m ∈ R

d(Ct(Wn,m;out(C)),Ac
r) ≥ n+mt− r

Proof. The proof of (1) follows from the fact that for any t ≥ 0

An(Cx,v⃗,γ) + tAm(Cv⃗,γ) = An+tm(Cx,v⃗,γ)

Indeed, because tCv⃗,γ = Cv⃗,γ and An(Cx,v⃗,γ) = x+ Cv⃗,γ + n
sin(γ) v⃗ we see that

An(Cx,v⃗,γ) + tAm(Cv⃗,γ) = (x+ Cv⃗,γ +
n

sin(γ)
v⃗) + t(Cv⃗,γ +

m

sin(γ)
v⃗)

= x+ Cv⃗,γ + (
n

sin(γ)
+

tm

sin(γ)
)v⃗ = An+tm(Cx,v⃗,γ)

(5.1)

where we have used that Cv⃗,γ is convex. The claim now follows from the definition of Ar(C).
The proof of (2) is now immediate because for all i ∈ I, Ac

r ⊂ Ac
r(Ci). □

With this in hand, we can prove the main technical estimate in the proof of Theorem 3.2 (ii).

Lemma 5.2. For any v > 0, δ < v
2 , 0 < ε < v

2 − δ, and ℓ > 0 there exists C > 0 so that for any
2t ≥ s ≥ t > 0

∥(Ω(s− t)− Id)Pδ(Wvt;out)∥op ≤
sˆ

t

∥V χAεw∥op dw + Ct−ℓ(5.2)

For any v,m and ℓ > 0 if 0 < δ < m, and 0 < ε < m − δ there exists C > 0 so that for any
s ≥ t > 0

∥(Ω(s− t)− Id)Pδ(Wvt,m;out)∥op ≤
∞̂

t

∥V χAεw∥op dw + Ct−ℓ(5.3)
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Proof. We start by noting that

∥(Ω(s− t)− Id)Pδ(Wvt,m;out)∥op = ∥(Ω(s)− Ω(t))Pδ(Wvt,m;out)∥op
We use the identity

Ω(s)− Ω(t) =

sˆ

t

eiwHi(H −H0)e
−iwH0 dw

by writing, for 0 < ε < v
2 − δ

∥
sˆ

t

eiwH(H −H0)e
−iwH0Pδ(Wvt;out) dw∥op ≤

sˆ

t

∥V e−iwH0Pδ(Wvt;out)∥op dw

≤
sˆ

t

∥V χAεw∥op dw +M

sˆ

t

∥χAc
εw
e−iwH0Pδ(Wvt;out)∥op dw

From the microlocal non-stationary phase estimate on Pδ (Lemma A.5) and Proposition 5.1 with
m = 0, we see that

∥χAc
εw
e−iwH0Pδ(Wvt;out)∥op < C[vt− wε]−(ℓ+1) < C[(v − 2ε)t]−(ℓ+1)

for all w < 2t since by Proposition 5.1 we have

d(Cw(Wvt;out),Ac
εw) ≥ vt− wε > (

v

2
− ε)w

which is in turn greater than δw because ε < v
2 − δ. Therefore, because s− t ≤ t

sˆ

t

∥χAc
εw
e−iwH0Pδ(Wvt;out)∥op dw ≤ C

s− t

(v − 2ε)ℓ+1tℓ+1
≤ Ct−ℓ(5.4)

In summary, we see that for any t > 0 and any s ∈ [t, 2t]

∥(Ω(s− t)− Id)Pδ(Wvt;out)∥op ≤
sˆ

t

∥V χAεw∥op dw + Ct−ℓ

for some constant C independent of t and s.
If we replace Wvt;out with Wvt,m;out, again from Lemma A.5 and Proposition 5.1 with m > 0, we

see that, for ε < m− δ

∥χAc
εw
eiwH0Pδ(Wvt,m;out)∥op < C(vt+ (m− ε)w)−(ℓ+1)

for all w > 0 since by Proposition 5.1, for δ < m and ε < m− δ

d(Cw(Wvt,m;out),Ac
εw) = vt+mw − εw > (m− ε)w > δw

Therefore,
sˆ

t

∥χAc
εw
eiwH0Pδ(Wvt,m;out)∥op dw ≤ C

sˆ

t

(vt+ (m− ε)w)−ℓ−1 dw ≤ C(vt)−ℓ

In summary, we see that for any s > t > 0

∥(Ω(s− t)− Id)Pδ(Wvt,m;out)∥op ≤
∞̂

t

∥V χAεw∥op dw + Ct−ℓ

for some constant C independent of t and s.
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□

Recall that

Hscat = {ψ ∈ H | ∃v,m, δ0 > 0 so that ∀δ ∈ (0, δ0) lim
t→∞

∥(Pδ(Wvt,m;out)− Id)ψt∥ = 0}

Theorem 5.3. Let ψ ∈ Hscat. Then Ω∗ψ exists and is in D, or equivalently ψ ∈ Ω(D).
Alternatively, if for some v > 0, δ < v

2 and ℓ > 1 there exists C > 0 so that

∥(Pδ(Wvt;out)− Id)ψt∥ < Ct−ℓ

for all t > 0 then Ω∗ψ exists and lies in D.

Proof. We show that

Ω∗(t) := eitH0e−itH

is Cauchy as t→ ∞. For that, fix t > 0 and suppose that t ≤ s. Observe that

∥(Ω∗(s)− Ω∗(t))ψ∥ = ∥(Ω(s− t)− Id)ψt∥

which comes from multiplying by e−itHΩ(s) and the identity

e−itHΩ(s)Ω∗(t) = Ω(s− t)e−itH

Since ψ ∈ Hscat, there is some v,m, δ0 > 0 such that for any δ < δ0

∥(Pδ(Wvt,m;out)− Id)ψt∥ = o(1)

as t→ ∞. For these v,m > 0 choose δ < min(m, δ0), so we may write

∥(Ω(s− t)− Id)ψt∥ ≤ ∥(Ω(s− t)− Id)Pδ(Wvt,m;out)ψt∥+ ∥(Ω(s− t)− Id)(Pδ(Wvt,m;out)− Id)ψt∥
= ∥(Ω(s− t)− Id)Pδ(Wvt,m;out)ψt∥+ o(1)

as t→ ∞. By using Lemma 5.2, we conclude that, for 0 < ε < m− δ

∥(Ω∗(s)− Ω∗(t))ψ∥ ≤ Ct−ℓ +

∞̂

t

∥V χAεw∥op dw∥ψ∥+ o(1)

for some constant C independent of t and s. The second term decays with t, by assumption (3.1),
and thus the entire expression goes to 0 as t→ ∞.

This shows that Ω∗ψ exists, so to see that it lies in D first note that for δ < m, Pδ(Wvt,m;out)ψt ∈
D by Proposition A.3 and thus so does eitH0Pδ(Wvt,m;out)ψt. Now observe

∥Ω∗(t)ψ − eitH0Pδ(Wvt,m;out)ψt∥ = ∥ψt − Pδ(Wvt,m;out)ψt∥
t→∞−−−→ 0

so that the claim follows because D is closed.
To see the second claim, for t > 0 and s ∈ [t, 2t], write as before, for the given v and δ < v

2

∥(Ω(s− t)− Id)ψt∥ ≤ ∥(Ω(s− t)− Id)Pδ(Wvt;out)ψt∥+ ∥(Ω(s− t)− Id)(Pδ(Wvt;out)− Id)ψt∥

≤ ∥(Ω(s− t)− Id)Pδ(Wvt;out)ψt∥+ Ct−ℓ

and again apply Lemma 5.2 to see that

∥(Ω∗(s)− Ω∗(t))ψ∥ ≤ Ct−ℓ +

sˆ

t

∥V χAεw∥op dw∥ψ∥

for some constant C independent of t and s.
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To conclude, for any s ≥ t > 0, fix N so that s ∈ [2N t, 2N+1t] and then write

∥(Ω∗(s)− Ω∗(t))ψ∥ ≤
N−1∑
n=0

∥(Ω∗(2n+1t)− Ω∗(2nt))ψ∥+ ∥(Ω∗(s)− Ω∗(2N t))ψ∥

≤ C

N∑
n=0

(2nt)−ℓ +

N−1∑
n=0

2n+1tˆ

2nt

∥V χAεw∥op dw∥ψ∥+
sˆ

2N t

∥V χAεw∥op dw∥ψ∥

≤ Ct−ℓ +

sˆ

t

∥V χAεw∥op dw∥ψ∥

where C does not depend on N . Note that in this step we require the prescribed rate of convergence
in ∥(Pδ(Wvt,m;out)− Id)ψt∥ < Ct−ℓ. This, combined with condition (3.1), prove that Ω∗ψ exists.

To see that Ω∗ψ lies in D, we proceed as before by noting that for any δ > 0, Proposition A.3
shows that

suppF(Pδ(Wvt;out)ψ) ⊂ Bδ +
⋃

(x,v⃗,γ)∈I

Cv⃗,γ

Now we can write

∥Ω∗ψ − eitH0Pδ(Wvt;out)ψt∥ ≤ ∥Ω∗ψ − Ω∗(t)ψ∥+ ∥Ω∗(t)ψ − eitH0Pδ(Wvt;out)ψt∥

By taking the limit t→ ∞ we see that for any v > 2δ > 0

supp Ω̂∗ψ ⊂ Bδ +
⋃

(x,v⃗,γ)∈I

Cv⃗,γ

Varying over all δ > 0, we conclude that Ω∗ψ ∈ D because D =
⋃
i∈I

D(Ci) . □

Having shown that Hscat ⊂ Ran(Ω), we now show that Hscat is dense in this subspace. For this
we will start with a lemma:

Lemma 5.4. Let ψ ∈ Ω(Dk(Ci)) for some i ∈ I and k > 0. Then there is some T0 = T0(k, Ci) such
that for any v,m, ε, ℓ, and δ satisfying

v, ε ∈ (0, k) 0 ≤ m < k 0 < δ < min(k −m,
k − v

2
) ℓ > 0

there exists C > 0 such that

∥(Pδ(Wvt,m;out)− Id)ψt∥ ≤ Ct−ℓ +

∞̂

t

∥χAεsV ∥op∥ψ∥ ds(5.5)

for all t > T0.

Proof. Let ψ = Ωφ for φ ∈ Dk(Ci), some i ∈ I, and some fixed k > 0. It suffices to show that for
some choice of parameters as above that for all t > T0

∥(Pδ(Wvt,m;out)− Id)e−itH0φ∥ < Ct−ℓ(5.6)

and

∥(Ω− Id)e−itH0φ∥ ≤ Ct−ℓ +

∞̂

t

∥χAεsV ∥op∥ψ∥ ds(5.7)
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in light of the inequality

∥(Pδ(Wvt,m;out)− Id)e−itHψ∥ = ∥(Pδ(Wvt,m;out)− Id)Ωe−itH0φ∥
≤ ∥(Pδ(Wvt,m;out)− Id)e−itH0φ∥+ ∥(Pδ(Wvt,m;out)− Id)(Ω− Id)e−itH0φ∥

and the fact that ∥Pδ(Wvt,m;out)− Id ∥op is bounded independently of t.
The inequality (5.7) is proven by first choosing ε < k and writing

∥(Ω− Id)e−itH0φ∥ ≤
∞̂

0

∥V e−i(s+t)H0φ∥ ds =
∞̂

t

∥V e−isH0φ∥ ds

≤
∞̂

t

∥χAεsV ∥op∥ψ∥ ds+M

∞̂

t

∥χAc
εs
e−isH0φ∥ ds

where have used that ∥φ∥ = ∥ψ∥. Now let c be the constant from Proposition 4.3 and note that

c < ks− εs

so long as s > T1 :=
c

k−ε . Therefore, Proposition 4.3 with n = εs implies the desired inequality for

any t > T1. Therefore, it remains to show (5.6) for some choice of parameters as above.
To see inequality (5.6), we write Ci = Cx,v⃗,γ and observe that

∥(Pδ(Wvt,m;out)− Id)e−itH0φ∥2 ≤ ⟨e−itH0φ, Pδ(Wc
vt,m;out)e

−itH0φ⟩
≤ ⟨e−itH0φ, Pδ(W

c
vt,m;out(Ci))e−itH0φ⟩ ≤ ∥φ∥∥Pδ(W

c
vt,m;out(Ci))e−itH0φ∥

Noting that

W c
vt,m;out(Ci) = Ac

vt(Ci)× Rd
⊔
Avt(Ci)×Ac

m(Cv⃗,γ)

and recalling that supp φ̂ ⋐ Ak(Cv⃗,γ), by the momentum localization properties of Pδ (Proposition
A.3) we see that

Pδ(W
c
vt,m;out(Ci))φ = Pδ(A

c
vt(Ci)× Rd)φ

as δ < k −m and d(Ak(Cv⃗,γ), Ac
m(Ci)) > k −m.

Next, choose T2 =
2∥x∥
k−v so that for any t > T2

d(Ac
vt(Ci), tAk(Cv⃗,γ)) > (k − v)t− ∥x∥ > k − v

2
t > δt

Proposition A.6 then implies that for any ℓ > 0 there is some C > 0 such that

∥Pδ(W
c
vt,m;out(Ci))e−itH0φ∥ < Ct−ℓ

for all t > T2 which proves (5.7). We then conclude that the lemma holds with T0 = max(T1, T2). □

Theorem 5.5. Suppose that ψ ∈ Ran(Ω). Then ψ ∈ Hscat.

Proof. Since
⋃
i∈I

⋃
k>0

Ω(Dk(Ci)) is dense in Ran(Ω), it suffices to show that Ω(Dk(Ci)) ⊂ Hscat for all

k > 0. But this is immediate from Lemma 5.4 so long as m, ε and v are chosen appropriately with
respect to k and δ0 is chosen to be less than min(k −m, k−v

2 ). □

Remark 5.6. The second claim in Theorem 5.3 and the above proof of Theorem 5.5 also show
that Ran(Ω) may be described without the parameter m as

Ω(D) = {ψ ∈ H | ∃v, C, ℓ, δ0 > 0 so that ∀δ ∈ (0, δ0) and t > 0 ∥(Pδ(Wvt;out)− Id)ψt∥ < Ct−ℓ}

but we prefer the given characterization as Hscat because Hint must be defined in terms of m.
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5.2. Characterizing Ran(Ω)⊥. Recall that

Hint = {ψ ∈ H | ∀v,m > 0,∃δ0 > 0 so that ∀δ ∈ (0, δ0) lim
t→∞

∥Pδ(Wvt,m;out)ψt∥ = 0}

Theorem 5.7. Under the above definition, Ran(Ω)⊥ = Hint.

Proof. For the inclusion Ran(Ω)⊥ ⊂ Hint, take ψ ∈ Ran(Ω)⊥ and fix any v,m > 0 and δ < m. For
any s > t > 0 we may write

∥Pδ(Wvt,m;out)ψt∥2 ≤ ⟨Pδ(Wvt,m;out)ψt, ψt⟩
≤ ⟨Ω(s− t)Pδ(Wvt,m;out)ψt, ψt⟩+ ∥ψ∥∥(Ω(s− t)− Id)Pδ(Wvt,m;out)ψt∥
= ⟨eitHΩ(s− t)Pδ(Wvt,m;out)ψt, ψ⟩+ ∥ψ∥∥(Ω(s− t)− Id)Pδ(Wvt,m;out)ψt∥
= ⟨Ω(s)eitH0Pδ(Wvt,m;out)ψt, ψ⟩+ ∥ψ∥∥(Ω(s− t)− Id)Pδ(Wvt,m;out)ψt∥

where we have used that

eitHΩ(s− t) = Ω(s)eitH0

Now by applying (5.3) from Lemma 5.2 to the second term, we get that for any s ≥ t > 0, and
0 < ε < m− δ

∥Pδ(Wvt,m;out)ψt∥2 ≤ ⟨Ω(s)eitH0Pδ(Wvt,m;out)ψt, ψ⟩+ Ct−ℓ +

∞̂

t

∥V χAεw∥op dw

for some constant C that does not depend on t or s. Observe that because δ < m, by Proposition
A.3, Pδ(Wvt,m;out)ψt lies in D as does eitH0Pδ(Wvt,m;out)ψt since the free propagator does not alter
the momentum support of a state. Thus, with t fixed, we may take the limit s → ∞ in the above
to obtain

∥Pδ(Wvt,m;out)ψt∥2 ≤ ⟨ΩeitH0Pδ(Wvt,m;out)ψt, ψ⟩+ Ct−ℓ +

∞̂

t

∥V χAεw∥op dw

= Ct−ℓ +

∞̂

t

∥V χAεw∥op dw
t→∞−−−→ 0

by assumption (3.1) and the fact that ψ ⊥ Ran(Ω). This proves the first inclusion.
Conversely, let ψ ∈ Hint. We will show that ψ ⊥ Ω(Dk(Ci)) for any k > 0, i ∈ I and conclude by

density. Let φ ∈ Ω(Dk(Ci)) for some k > 0, i ∈ I and let m, ε and v satisfy m, v, ε ∈ (0, k). Then
by Lemma 5.4 for δ sufficiently small there exists some T0(Ci) > 0 such that there are constants
C > 0 and ℓ > 0 so that

∥(Pδ(Wvt,m;out)− Id)φt∥ < Ct−ℓ +

∞̂

t

∥χAεsV ∥op∥φ∥ ds

for all t > T0.
Then we have that for any t > T0

⟨ψ,φ⟩ = ⟨Pδ(Wvt,m;out)ψt, φ⟩+ ⟨ψt, (Pδ(Wvt,m;out)− id)φt⟩
≤ ∥Pδ(Wvt,m;out)ψt∥∥φ∥+ ∥ψ∥∥(Pδ(Wvt,m;out)− Id)φt∥

< ∥Pδ(Wvt,m;out)ψt∥∥φ∥+ Ct−ℓ +

∞̂

t

∥χAεsV ∥op∥φ∥ ds
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Since ψ ∈ Hint, for the same v and m, and choosing δ smaller if necessary, we have that

lim
t→∞

∥Pδ(Wvt,m;out)ψt∥ = 0

so we may conclude that

⟨ψ,φ⟩ < ∥Pδ(Wvt,m;out)ψt∥∥φ∥+ Ct−ℓ +

∞̂

t

∥χAεsV ∥op∥φ∥ ds
t→∞−−−→ 0

from assumption (3.1). Therefore, ψ ⊥ φ, as needed. □

5.3. Spatial characterizations of Hscat and Hint. In this section, we show that for some systems
one can replace the microlocal descriptions of Hscat and Hint with descriptions that are purely
spatial. Recall Theorem 3.3:

Theorem 3.3. Suppose that {Ci}i∈I consists of half-spaces. Then with D =
⋃

i∈I D(Ci) we have
that

Ω(D) = {ψ ∈ H | ∃v > 0, lim
t→∞

∥χAc
vt
ψt∥ = 0}

Ω(D)⊥ = {ψ ∈ H | ∀v > 0, lim
t→∞

∥χAvtψt∥ = 0}

Remark 5.8. The above theorem applies to potentials for which {Ci}i∈I also contains cones of
aperture less than π. In this case, one will have a spatial characterization only for those cones of
large enough aperture. See Example 2.5 for one such setting.

So far, we have described the set of scattering states Hscat as those states which asymptotically
propagate into some cone C with outgoing momenta, that is, those that point into C. To obtain a
spatial characterization, it suffices to show that it is impossible for a state to propagate into C with
any other momentum localization if γ = π

2 . For this, we begin by defining the incoming subset of
phase space for any collection of cones: let

Wn,m;in(Cx,v⃗,γ) = {(y, p) ∈ R2d | y ∈ An(Cx,v⃗,γ),−p ∈ A−m(Cv⃗,γ)}

Wn,m;in =
⋃
i∈I

Wn,m;in(Ci)

See Figure 6. We show that asymptotically no state can concentrate in these subsets of phase space:

Proposition 5.9. For any v > 0, 0 < m < v, and δ < v−m
2

s-lim
t→∞

Pδ(Wvt,m;in)e
−itH = 0(5.8)

Proof. This proof is based on an argument of Enss recorded in [16]. For any ψ ∈ H we can write

∥Pδ(Wvt,m;in)e
−itHψ∥ ≤ ∥Pδ(Wvt,m;in)(e

−itH − e−itH0)ψ∥+ ∥Pδ(Wvt,m;in)e
−itH0ψ∥

so to prove (5.8), it suffices to prove that for v,m, and δ as above

lim
t→∞

∥Pδ(Wvt,m;in)(e
−itH − e−itH0)∥op = 0(5.9)

and

s-lim
t→∞

Pδ(Wvt,m;in)e
−itH0 = 0(5.10)
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Ci

γ

An(Ci)

x

Wn,m;in

Wn,m;out

Figure 6. Illustration of the phase space sets Wn,m;out(Ci) and Wn,m;in(Ci): each
has space coordinates inside the black cone with momentum coordinates inside the
red/blue cone, respectively.

To prove (5.9), we write, for ε < v−m
4

∥Pδ(Wvt,m;in)(e
−itH − e−itH0)∥op = ∥(eitH − eitH0)Pδ(Wvt,m;in)∥op

= ∥(Id−e−itHeitH0)Pδ(Wvt,m;in)∥op ≤
tˆ

0

∥e−iwH(−H +H0)e
iwH0Pδ(Wvt,m;in)∥op dw

≤
tˆ

0

∥χAε(t+w)
V ∥op dw +M

tˆ

0

∥χAc
ε(t+w)

eiwH0Pδ(Wvt,m;in)∥op dw

≤
∞̂

t

∥χAεwV ∥op dw +M

tˆ

0

∥χAc
ε(t+w)

eiwH0Pδ(Wvt,m;in)∥op dw

Now we note that for any cone Cx,v⃗,γ
C−w(Wvt,m;in(Cx,v⃗,γ)) = {y − wp | (y, p) ∈Wvt,m;in(Cx,v⃗,γ)}

= {y + wp | (y, p) ∈ Avt(Cx,v⃗,γ), p ∈ A−m(Cv⃗,γ)}
= Cw(Wvt,−m;out)

so that by Proposition 5.1

d(C−w(Wvt,m;in),Ac
ε(t+w)) = (vt−mw)− ε(t+ w) > (v −m− 2ε)w

which is greater than δw because w < t, ε < v−m
4 , and δ < v−m

2 . Thus, we may apply Lemma A.5
to conclude that for any ℓ > 0 there is some C > 0 such that

∥χAc
ε(t+w)

eiwH0Pδ(Wvt,m;in)∥op < Ct−ℓ

from which (5.9) follows immediately when combined with the Enss condition (3.1).
To prove (5.10), we fix ψ ∈ H compactly supported and choose R so that suppψ ⊂ A0 + BR.

Then

∥Pδ(Wvt,m;in)e
−iH0tψ∥ = ∥Pδ(Wvt,m;in)e

−iH0tχA0+BR
ψ∥ ≤ ∥χA0+BR

eiH0tPδ(Wvt,m;in)∥op∥ψ∥
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Again by Proposition 5.1

d(C−t(Wvt,m;in),A0 +BR) > (v −m)t−R >
v −m

2
t > δt

for t > 2R
v−m . Therefore, we can apply Lemma A.5, to get that

∥χA0+BR
eiH0tPδ(Wvt,m;in)∥op < C((v −m)t−R)−ℓ

from which it follows that

lim
t→∞

Pδ(Wvt,m;in)e
−itH0ψ = 0

Density establishes (5.10), thus proving the lemma in full. □

Proof of Theorem 3.3. The key point is that in this case

Wn,m;out ∪Wn,m;in = An × Rd(5.11)

To see this, note that if Ci = Cx,v⃗,γ and γ = π
2 then Cc

v⃗,γ ⊂ −Cv⃗,γ since if y ∈ Cc
v⃗,γ we have

⟨y, v⃗⟩ ≤ cos(γ)∥y∥ = 0 =⇒ ⟨−y, v⃗⟩ ≥ 0 = cos(γ)∥y∥
The inequality is strict up to a set of zero measure. In particular,

Ac
m(Cv⃗,γ) = Cc

v⃗,γ +
m

sin(γ)
v⃗ ⊂ −Cv⃗,γ +

m

sin(γ)
v⃗ = −A−m(Cv⃗,γ)

so that (5.11) holds.
Now, fix ψ ∈ Hint and v > 0. Choose m < v and δ sufficiently small and apply Proposition 5.9

to see that

lim
t→∞

∥Pδ(Avt × Rd)ψt∥ = lim
t→∞

∥Pδ(Wvt,m;out ∪Wvt,m;in)ψt∥ = 0

Since

∥χA vt
2

ψt∥ ≤ ∥Pδ(Avt × Rd)ψt∥+ ∥χA vt
2

Pδ(Ac
vt × Rd)ψt∥

and

∥Pδ(Avt × Rd)ψt∥ ≤ ∥χA2vtψt∥+ ∥Pδ(Avt × Rd)χAc
2vt
ψt∥

from Proposition A.4 we see that

∥χA vt
2

ψt∥+ o(1) ≤ ∥Pδ(Avt × Rd)ψt∥ ≤ ∥χA2vtψt∥+ o(1)

as t→ ∞. Therefore,

Hint ⊂ {ψ ∈ H | ∀v > 0, lim
t→0

∥χAvtψt∥ = 0}

Conversely, if lim
t→∞

∥χAvtψt∥ = 0 then by the above for any δ > 0

lim
t→∞

∥Pδ(Avt × Rd)ψt∥ = 0

and thus for any m > 0

∥Pδ(Wvt,m;out)ψt∥2 =
〈
Pδ(Wvt,m;out)

2ψt, ψt

〉
≤ ⟨Pδ(Avt × Rd)ψt, ψt⟩

t→∞−−−→ 0

This proves the opposite inclusion

{ψ ∈ H | ∀v > 0, lim
t→0

∥χAvtψt∥ = 0} ⊂ Hint

and allows us to conclude the equality of the two subspaces.
The same argument shows that

Hscat ⊂ {ψ ∈ H | ∃v > 0 lim
t→0

∥χAc
vt
ψt∥ = 0}
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because Ac
vt × Rd ⊂ Wc

vt,m;out for any m > 0. Furthermore, if lim
t→∞

∥χAc
vt
ψt∥ = 0 for some v > 0,

then ψ is orthogonal to Hint since we have shown that any φ ∈ Hint must satisfy lim
t→∞

∥χAvtφt∥ = 0,

for all v > 0. Therefore, ψ ∈ H⊥
int = Hscat, thus proving the opposite inclusion and concluding the

proof. □

6. Examples

Example 2.1 (Single cone). Suppose that {C}i∈I consists of a single cone C = Cx,v⃗,γ . Then

D = D(Cv⃗,γ) and Theorem 3.2 gives the following microlocal description:

Ω(D) = {ψ ∈ H | ∃v,m, δ0 > 0, so that ∀δ ∈ (0, δ0) lim
t→∞

∥(Pδ([Avt(C)×Am(C)]c)ψt∥ = 0}

Ω(D)⊥ = {ψ ∈ H | ∀v,m > 0, ∃δ0 > 0 so that ∀δ ∈ (0, δ0) lim
t→∞

∥Pδ(Avt(C)×Am(C))ψt∥ = 0}

This indicates that Ω(D) consists of states which propagate into C with momenta in Am(C). When
γ < π

2 , this is the best description our theorems afford. It does not rule out a state in Ω(D)⊥ which
propagates into C, but with the wrong momenta and that thus could bounce off of the boundary
of C.

However, when γ = π
2 , the potential is concentrated in a half-space and the Theorem 3.3 shows

that in fact

Ω(D) = {ψ ∈ H | ∃v > 0, lim
t→∞

∥χAc
vt(C)ψt∥ = 0}

Ω(D)⊥ = {ψ ∈ H | ∀v > 0, lim
t→∞

∥χAvt(C)ψt∥ = 0}

because in this case we have shown that it is impossible for a state to propagate into C with
momenta pointing away from C (this is the content of Proposition 5.9). Systems of this type, in
particular of a vacuum coupled to a crystal (that is, a periodic potential) are physically important
and have been studied, among elsewhere, in [7].

Example 2.2 (Non-convex cone). Let C = Cx,v⃗,γ for γ > π
2 . As explained in the introduction, we

may choose {C}i∈I so that
⋃
i∈I

Ci = C. It is easily verified that

Ar(C) = Ar

so the generalized Enss condition remains:

∥V χAr(C)∥op = ∥V χAr∥op ∈ L1([0,∞), dr)

Theorem 3.3 shows that in fact

Ω(D) = {ψ ∈ H | ∃v > 0, lim
t→∞

∥χAc
vt(C)ψt∥ = 0}

Ω(D)⊥ = {ψ ∈ H | ∀v > 0 lim
t→∞

∥χAvt(C)ψt∥ = 0}

as one would expect.

Example 2.3 (Short-range scattering). As explained in the introduction, we may choose {C}i∈I
so that Ar = Bc

r. Relative to this collection of cones, the condition (3.1) becomes the classical Enns
condition

∥V χBc
r
∥op ∈ L1([0,∞), dr)



22 ADAM BLACK AND TAL MALINOVITCH

which is one of many short-range scattering assumptions in the literature. Here, D is in fact equal
to all of H. In this setting, Theorem 3.3 shows that

Ran(Ω) = {ψ ∈ H | ∃v > 0, lim
t→∞

∥χBvtψt∥ = 0}

Ran(Ω)⊥ = {ψ ∈ H | ∀v > 0, lim
t→∞

∥χBc
vt
ψt∥ = 0}

This result may be contrasted with the usual asymptotic completeness statement for short-range
scattering, which is

Ran(Ω) = Hc(H)

Ran(Ω)⊥ = Hpp(H)

This latter description may be connected to the dynamics of H via the RAGE theorem [2, 14],
which is a crucial ingredient in the original argument of Enss. A standard formulation of the
RAGE theorem (see for example [17]) is

Hc(H) = {ψ ∈ H | lim
n→∞

lim
T→∞

1

T

T̂

0

∥χBnψt∥dt = 0}

Hpp(H) = {ψ ∈ H | lim
n→∞

sup
t≥0

∥χBc
n
ψt∥dt = 0}

In particular, the space variable n is decoupled from t, whereas in order to get the spatial description,
we fixed n = vt for some velocity v.

Example 2.4 (Subspace potential). Let Sr be the points within distance r from some fixed subspace
of Rd. We explained in the introduction that Sr may be written as Ac

r for some appropriately chosen
collection of cones. In this setting, D = H and Theorem 3.3 shows that if

∥V χSc
r
∥op ∈ L1([0,∞), dr)

then

Ran(Ω) = {ψ ∈ H | ∃v > 0, lim
t→∞

∥χSvtψt∥ = 0}

Ran(Ω)⊥ = {ψ ∈ H | ∀v > 0, lim
t→∞

∥χSc
vt
ψt∥ = 0}

which recovers the main result of [3].

Example 2.5 (Broken subspace). In this case, {C}i∈I consists of two cones C1 and C2, the first
with γ1 <

π
2 and the second with γ2 = π − γ1. Let D1 = D(C1) and D2 = D(C2) be the domains of

Ω corresponding to each cone. Then relative to C1 we obtain only a microlocal description

Ω(D1) = {ψ ∈ H | ∃v,m, δ0 > 0 so that ∀δ ∈ (0, δ0) lim
t→∞

∥(Pδ([Avt(C1)× C1]c)ψt∥ = 0}

Ω(D1)
⊥ = {ψ ∈ H | ∀v,m > 0,∃δ0 > 0, so that ∀δ ∈ (0, δ0) lim

t→∞
∥Pδ(Avt(C1)×Am(C1))ψt∥ = 0}

whereas for the second cone we obtain a purely spatial description, as seen in Example 2.2 above

Ω(D2) = {ψ ∈ H | ∃v > 0, lim
t→∞

∥χAvt(C2)ψt∥ = 0}

Ω(D2)
⊥ = {ψ ∈ H | ∀v > 0, lim

t→∞
∥χAc

vt(C2)ψt∥ = 0}

In other words, any state which propagates into the larger cone C2 at a linear rate must be a
scattering state, but for C1 this is only the case for states with momenta which also point into C1.
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Appendix A. Existence of the POVM Pδ

Proposition A.1. There exists a Positive Operator Valued Measure (POVM), Pδ, defined on the
phase space Rd

x × Rd
p, with the following properties, for any E ⊂ R2d Borel

(1) (Observable) Pδ(R2d) = id.
(2) (Momentum localization) Let B ⊂ Rd and D ⊂ Rd be Borel sets such that d(B,D) > δ.

Then for any E ⊂ Rd ×B Borel and ψ ∈ H such that supp ψ̂ ⊂ D

Pδ(E)ψ = 0

(3) (Approximate space localization) Let A ⊂ Rd and D ⊂ Rd be Borel sets so that d(D,A) > 0.
Then for any ℓ > 0 there exists some constant C > 0 depending only on ηδ so that for all
E ⊂ A× Rd

∥Pδ(E)χD∥op < C[d(A,D)]−ℓ

(4) (Microlocal non-stationary phase estimate) Let Ct(E) ⊂ Rd denote the classically allowed
region associated to E ⊂ R2d at time t:

Ct(E) = {x+ tp | (x, p) ∈ E}

Let F ⊂ Rd be Borel. For any ℓ > 0 there exists C > 0 such that

∥χF e
−itH0Pδ(E)∥op ≤ Cd(|t|)−ℓ

for all t such that d(t) := d(Ct(E), F ) > δ|t|.
(5) (Spatial non-stationary phase estimate) Let {At}t≥0 be collections of Borel subsets of Rd.

Then for any φ ∈ S such that supp φ̂ ⋐ D Borel, ℓ > 0, and ε > 0 there exists some
constant C(ψ, ℓ, ε, δ) > 0 such that

∥Pδ(At × Rd)e−itH0φ∥ < Ct−ℓ

for all t such that d(At, tD) > εt.

Proof. To this end, we will use the phase space observable formalism developed in [4, 6] and used
in [3].

Choose η ∈ S, such that ∥η∥ = 1 and supp η̂ ⊂ B1. Let ηδ be such that η̂δ(p) = δ−
d
2 η̂(pδ ), a

rescaling of η, so that supp η̂δ ⊂ Bδ and ∥ηδ∥ = 1.
Now define the following family of coherent states by translating ηδ in phase space:

η̂x,p;δ(ξ) = e−ixξη̂δ(ξ − p)

We use this to define a family, depending on δ > 0, of positive-operator-valued measures: for any
E ⊂ R2d Borel and ψ ∈ H let

Pδ(E)ψ = (2π)−d

¨

E

⟨ηx,p;δ, ψ⟩ ηx,p;δ dx dp

The various properties of Pδ are proved in a series of propositions below.
In Appendix A of [3] we proved the following properties of Pδ:

Proposition A.2 (Observable). For any δ > 0 we have Pδ(R2d) = id.

Proposition A.3 (Momentum localization). Let B ⊂ Rd and D ⊂ Rd be Borel sets such that

d(B,D) > δ. Then for any E ⊂ Rd ×B Borel and ψ ∈ H such that supp ψ̂ ⊂ D

Pδ(E)ψ = 0



24 ADAM BLACK AND TAL MALINOVITCH

Proposition A.4 (Approximate space localization). Let A ⊂ Rd Borel and any set D ⊂ Rd Borel
such that d(D,A) > 0, for any ℓ > 0 we have some constant C > 0 depending only on ηδ so that

∥Pδ(A× Rd)χD∥op < C[d(A,D)]−ℓ

Finally we prove two estimates relating Pδ to the free propagator e−itH0 , both based on the
principle of of non-stationary phase. The first is similar to Lemma 2 of Theorem XI.112 in [13],
but adapted to Pδ. This lemma and its proof are similar to Lemma 3 in [22].

Lemma A.5 (Microlocal non-stationary phase estimate). Let Ct(E) ⊂ Rd denote the classically
allowed region associated to E ⊂ R2d at time t:

Ct(E) = {x+ tp | (x, p) ∈ E}

Let F ⊂ Rd be Borel. For any ℓ > 0 there exists C > 0 such that

∥χF e
−itH0Pδ(E)∥op ≤ Cd(|t|)−ℓ

for all t such that d(t) := d(Ct(E), F ) > δ|t|.

Proof. We start by noting that for any ψ ∈ H, by the boundedness of Pδ

∥P (E)ψ∥2 = ⟨ψ, P 2(E)ψ⟩ ≤ ⟨ψ, P (E)ψ⟩ = (2π)−d

¨

E

⟨η, ψ⟩ ⟨ψ, η⟩ dxdp = (2π)−d

¨

E

| ⟨η, ψ⟩ |2dxdp

We will estimate the norm of the adjoint operator Pδ(E)eitH0χF . For ψ ∈ H, by the above inequality

∥Pδ(E)eitH0χFψ∥2 ≤ (2π)−d

¨

E

|
〈
ηx,p;δ, e

itH0χFψ
〉
|2 dx dp

= (2π)−d

¨

E

|
ˆ

Rd

e−itH0ηx,p;δ(y)χF (y)ψ(y) dy|2 dx dp

We now compute

(e−itH0ηx,p;δ)(y) = (2π)−
d
2

ˆ

Rd

eiξ·(y−x)−it ξ
2

2 η̂δ(ξ − p) dξ

= eip·(y−x)−it p
2

2 (2π)−
d
2

ˆ

Rd

eiξ·(y−x)−it ξ
2

2
−itξ·pη̂δ(ξ) dξ = eip·(y−x)−it p

2

2 (e−itH0ηδ)(y − (x+ tp))

Recalling that for any (x, p) ∈ E and y ∈ F , |y − (x+ tp)| > d(t), we see that

|
ˆ

Rd

e−itH0ηx,p;δ(y)χF (y)ψ(y) dy| = |
ˆ

Rd

e−ipy(e−itH0ηδ)(y − (x+ tp))χF (y)ψ(y) dy|

= |
ˆ

Rd

e−ipy(e−itH0ηδ)(y − (x+ tp))χ{|y−(x+tp)|>d(t)}(y)χF (y)ψ(y) dy|

= (2π)
d
2 |F [(e−itH0ηδ)(· − (x+ tp))χ{|·−(x+tp)|>d(t)}(·)χF (·)ψ(·)](p)|
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We now perform the change of variables x′ = x+ tp and apply the Plancharel theorem to see that

(2π)−d

¨

E

|
ˆ

Rd

e−itH0ηx,p;δ(y)χF (y)ψ(y) dy|2 dx dp

≤ (2π)−d

¨

R2d

(2π)d|F [(e−itH0ηδ)(· − (x+ tp))χ{|·−(x+tp)|>d(t)}(·)χF (·)ψ(·)](p)|2 dx dp

=x′=x+tp

¨

R2d

|F [(e−itH0ηδ)(· − x′)χ{|·−x′|>d(t)}(·)χF (·)ψ(·)](p)|2 dx′ dp

=

¨

R2d

|(e−itH0ηδ)(y − x′)χ{|y−x′|>d(t)}(y)χF (y)ψ(y)|2 dx′ dy

=

ˆ

Rd

|χF (y)ψ(y)|2
ˆ

{x′||y−x′|>d(t)}

|(e−itH0ηδ)(y − x′)|2 dx′ dy ≤ ∥ψ∥2
ˆ

Bc
d(t)

|(e−itH0ηδ)(x
′)|2 dx′

Since d(t) > δt by assumption and supp η̂ ⊂ Bδ, we see that if x′ ∈ Bc
d(t) then

x′

t ̸∈ Bδ so we may

apply Lemma 4.2 to see that for any ℓ > 0 there exists C > 0 depending only on η and δ such thatˆ

{x′||y−x′|>d(t)}

|(e−itH0ηδ)(y − x′)|2 dx′ ≤ C

ˆ

Bc
d(t)

(1 + ∥x′∥+ |t|)−ℓ dx′ ≤ C(1 + d(t) + |t|)−ℓ+d

Thus, we conclude that

∥Pδ(E)eitH0χFψ∥ ≤ C(1 + |t|+ d(t))−ℓ+d∥ψ∥2

as claimed. □

The second lemma is essentially a standard non-stationary phase estimate on e−itH0 : see, for
instance, the Corollary to Theorem XI.14 from [13].

Proposition A.6 (Spatial non-stationary phase estimate). Let {At}t≥0 be a collection of Borel
subsets of Rd. Then for any φ ∈ S such that supp φ̂ ⋐ D Borel, ℓ > 0, and ε > 0 there exists some
constant C(ψ, ℓ, ε, δ) > 0 such that

∥Pδ(At × Rd)e−itH0φ∥ < Ct−ℓ

for all t such that d(At, tD) > εt.

Proof. Let φ ∈ S and ℓ, ε > 0 and D be as above. Then we can write

∥Pδ(At × Rd)e−itH0φ∥ ≤ ∥Pδ(At × Rd)χ[At+B ε
2 t]

c∥op∥φ∥+ ∥χAt+B ε
2 t
e−itH0φ∥

Since d(At, [At +B ε
2
t]
c) > ε

2 t, by Property A.4 we get that

∥Pδ(At × Rd)χ[At+B ε
2 t]

c∥op < Ct−ℓ

We can write

∥χAt+B ε
2
e−itH0φ∥2 =

ˆ

At+B ε
2

|e−itH0φ(y)|2dy

Next, we note that

d(At +B ε
2
t, tD) ≥ d(At, tD)− ε

2
t >

ε

2
t
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So we conclude that y ∈ At +B ε
2
t implies that y

t ̸∈ D, and so by Lemma 4.3 we get

|e−itH0φ(y)| ≤ C(1 + ∥y∥+ t)−ℓ−d

Therefore,

∥χAt+B ε
2 t
e−itH0φ∥2 ≤ (1 + t)−ℓ

as needed. □

With this lemma, we have proved all the claimed properties of Pδ. □
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