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L1 → L∞ DISPERSIVE ESTIMATES FOR COULOMB WAVES

ADAM BLACK, EBRU TOPRAK, BRUNO VERGARA BIGGIO, AND JIAHUA ZOU

Abstract. We show the time decay of spherically symmetric Coulomb waves in R
3 for the case

of a repulsive charge. By means of a distorted Fourier transform adapted to H = −∆+ q · |x|−1,

with q > 0, we explicitly compute the kernel of the evolution operator eitH . A detailed analysis

of the kernel is then used to prove that for large times, eitH obeys an L1 → L∞ dispersive

estimate with the natural decay rate t−
3

2 .

1. Introduction

1.1. Motivation and main result. The time-dependent Coulomb wave equation describes

the quantum dynamics of a charge under the influence of a long-range spherically symmetric

potential in R
3:

(
i∂t −H)u = 0 , H := −∆+

q

|x| , q ∈ R

u(0, x) = f(x)
(1.1)

In the attractive case, q < 0, this equation has been used since the birth of quantum mechanics

to describe the time-evolution of the electron in a hydrogen atom [39]. In this paper, we focus

on the repulsive case, q > 0, which was introduced by Yost, Wheeler and Breit in 1936 [45] in

connection with the interaction of charges of the same sign. The corresponding solutions are

called Coulomb waves [13].

As is well known, the free Schrödinger equation in R
3 (that is (1.1) without the potential

term) enjoys many dispersive estimates describing the spreading of the wave packet, the most

fundamental of which is

‖eit∆f‖L∞(R3) ≤
C

|t|3/2 ‖f‖L1(R3) ,(1.2)

with constant independent of f and t. This is a direct consequence of the fact that the propagator

of the free Schrödinger equation in R
3 can be computed as eit∆f = kt ∗ f , where

kt(x) = (4πit)−3/2e
|x|2

4it .

Our goal in this paper is to extend the estimate (1.2) to eitH for radial data. Namely, we prove

the following theorem:
1
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Theorem 1.1. Let H = −∆ + q
|x| be the Coulomb Hamiltonian in R

3, with q > 0. Then, for

any spherically symmetric function f one has the following a priori estimate

(1.3) ‖eitHf‖L∞(R3) ≤
C

|t|3/2 ‖f‖L1(R3) , |t| ≥ 1.

with constant independent of f and t.

As explained in the appendix, H is a self-adjoint operator on H2(R3) so the meaning of eitH

is clear. In later work, we plan to extend this result to non-radial functions, see the discussion

in Section 1.3.

Besides its intrinsic interest, the estimate (1.3) serves as an initial step towards understanding

the modified scattering of the Hartree or Gross-Pitaevskii equation in R
3:

(i∂t −∆)u+
(
(−∆)−1|u|2

)
u = 0 .

This is a nonlinear equation modeling the dynamics of non-relativistic bosonic many-body par-

ticle systems in the mean-field limit, which has been extensively studied together with the NLS

equation, see e.g. [20, 24]. Indeed, taking radial perturbations leads to the equation

(
i∂t − ∂2r +

1

r

)
v + ε2v

∫

R+

1

max{r, s}|v(s, t)|
2ds = 0 ,

with 0 < ε ≪ 1 whose linearization is given by the Coulomb equation (1.1) for radial data.

Thus, any investigation of the nonlinear scattering phenomenon of the Hartree equation must

begin with a detailed understanding of the long-time asymptotics of solutions to (1.1).

1.2. Prior work. The problem of extending pointwise dispersive estimates to Hamiltonians of

the form −∆+ V (x) has attracted considerable attention, given that these estimates serve as

crucial tools for the subsequent analysis of both linear and nonlinear problems. In the linear

setting, they give rise to Strichartz estimates and in the nonlinear realm they can be used to

prove the stability of solitons, see e.g [37, 38, 40, 42]. Nevertheless, most of the existing studies

rely on either the perturbation of the free resolvent operator or the use of Duhamel’s formula.

Consequently, these approaches require that the potential V be bounded or small in some suitable

sense or decay faster than |x|−1 at infinity, see the notable references [3,14,19,23,36,44] for some

of the diverse methods employed in this area. From this perspective, the Coulomb potential |x|−1

is pathological because of its singularity at the origin and slow decay at infinity. For instance,

while pointwise estimates have been investigated for inverse square potentials [16,26], the same

methods cannot be directly applied to H due to the differing scaling behavior between the

Coulomb potential and the Laplacian.
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To the best of our knowledge, there is only one study quantifying the dispersive properties of

the Hamiltonian H. In [29], Mizutani considers the more general operator

H1 := −∆+ Z|x|−µ + εVS(x)

on R
n where µ ∈ (0, 2) and |∂αx {VS(x)}| ≤ C〈x〉−1−µ−|α|, which for ε = 0 and µ = 1 is our

operator H. For ε ≥ 0 sufficiently small depending on Z, µ, and VS , they show Strichartz

estimates (including the endpoint) for H1, i.e.,

‖eitH1f‖Lp(R:Lq(Rn)) ≤ C‖f‖L2(Rn),
2

p
=
n

2
− n

q
, (n, p, q) 6= (2,∞,∞).

We emphasize that our estimates are instead pointwise in that they control the L∞ norm for all

large t. Furthermore, we explicitly compute the kernel of the evolution operator eitH for radial

data, which may be of independent interest.

1.3. Overview of the proof. Though we will mostly focus in radial waves, let us consider the

spherical decomposition of L2(R3) =
⊕∞

ℓ=0 L
2(R+, r2dr) ⊗ Lℓ, where r := |x| and Lℓ denotes

the ℓ-th eigenspace of spherical harmonics of angular momentum ℓ = 0, 1, 2 . . . . The Coulomb

Hamiltonian H restricted to Lℓ is then unitarily equivalent to the Sturm-Liouville operator

−∂2r + ℓ(ℓ+1)
r2

+ q
r :

H|Lℓ
= Hℓ,q := r−1

(
− ∂2r +

ℓ(ℓ+ 1)

r2
+
q

r

)
r .

Thus, any f ∈ L2(R3) can be represented as

f(r, ω) = r
∞∑

ℓ=0

fℓ(r)Yℓ,m(ω) , fℓ(r) :=
ℓ∑

m=−ℓ

〈f(r, ·), Yℓ,m〉 , r ∈ R
+ , ω ∈ S

2 ,

where the inner product is understood in the sense of L2(S2), fℓ ∈ L2(R+, r2dr) and Yℓ,m denotes

the (ℓ,m)-spherical harmonic, i.e. −∆S2Yℓ,m = ℓ(ℓ+ 1)Yℓ,m.

In this paper, we treat the radial sector, ℓ = 0, leaving the analysis of other angular momenta

to a subsequent work. As such, we must understand the half-line Schrödinger operator

− d2

dr2
+
q

r
.

This operator is not essentially self-adjoint (indeed, it is limit circle at r = 0), so we must be

careful to choose the correct self-adjoint extension whose dynamics coincide with that of H0,q,

which we denote Lq. We refer the reader to the appendix for the construction of Lq and its

relevant properties.

To explicitly describe the time-evolution of Lq, we derive its distorted Fourier transform, which

diagonalizes the operator. This consists of a distorted Fourier basis of appropriately selected
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generalized eigenfunctions of Lq and a spectral measure ρ(dσ), which yields the representation

eitLqg(r) =

∞∫

0

∞∫

0

eitσ
2
φq(σ, r)φq(σ, s)g(s) ds ρ(dσ).(1.4)

While the existence of such a transform is quite classical for many classes of potentials, the

potential r−1 is strongly singular, so that additional care is required to develop its spectral

theory. The distorted Fourier transform of strongly singular potentials has been studied in [18].

However, the Coulomb potential is not singular enough to apply the results therein verbatim.

In the appendix, we adapt the results of [18] to treat the Coulomb case, and derive a distorted

Fourier basis and spectral measure given by

φq(σ, r) = (2iσ)−1M iq
2σ

, 1
2
(2iσr), dρ(σ) = 2µ2(σ)dσ(1.5)

where µ2(σ) = qσ[e
qπ
σ − 1], µ ≥ 0 and M iq

2σ
, 1
2
(2iσr) is Whittaker-M function, see 13.14 in [8].

We also mention work of Fulton [17], in which Frobenius solutions from zero are used to derive

the distorted Fourier transform and spectral measure in the case of strongly singular potentials.

Substituting (1.5) into (1.4) and employing the relation H0,q = r−1Lqr, we obtain

eitH0,qg(r) =
2q

r

∞∫

0

∞∫

0

eitq
2σ2
e(qσ, r)e(qσ, s)sg(s)dsdσ(1.6)

=

∞∫

0

Kt(r, s)s
2g(s)ds ,

where

e(qσ, r) = µ(qσ)φ1(qσ, r), Kt(r, s) =
2q

rs

∞∫

0

eitq
2σ2
e(qσ, r)e(qσ, s)dσ.(1.7)

Therefore, Theorem 1.1 holds provided that we establish

sup
r≥s>0

|Kt(r, s)| . t−3/2, t ≥ 1.(1.8)

It should be stressed that, despite the apparent simplicity of Kt in terms of special functions,

we require several very delicate approximations in order to prove (1.8). In particular, for use

in the oscillatory integral defining Kt, it is important that we obtain C2 control jointly in the

variables r and σ. While for large σ known integral representation of e(qσ, r) suffice, as σ → 0

these turn out to be useless. Therefore, one needs to perform a detailed analysis of the eigenvalue

problem

−d
2f

dr2
+
f

r
= σ2f(1.9)
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as σ → 0, in which we have conveniently normalized the charge constant to q = 1. By rescaling,

this loses no generality so we adopt this convention from now on. The fundamental set of

solutions to (1.9) consists of M i
2σ

, 1
2
(2iσr) and W i

2σ
, 1
2
(2iσr), the latter being the Whittaker-W

function. With φ(σ, r) := φ1(σ, r), as r approaches 0, for any fixed σ > 0

φ(σ, r) = r(1 +O(σr))(1.10)

whereas as for r → ∞, by equations (13.14.32), (13.14.21), and (5.4.3) in [8], we have that

φ(σ, r) ∼ C0σ
− 1

2 [e
π
σ − 1]

1
2 sin(Θ(σ, r))(1.11)

Θ(σ, r) = σr − log(2σr)

2σ
+ θ0(σ)(1.12)

for some absolute constant C0 and phase correction θ0(σ).

Heuristically, one may see these asymptotics via the WKB method. Let

ρσ(s, r) =

r∫

s

√
|Q|du, Q = u−1 − σ2(1.13)

be the Agmon distance [2, Ch.5] from s to r. To the right of the turning point r∗ = σ−2, WKB

predicts that φ will grow as eρσ(0,r∗) before oscillations set in, which are governed by eiρσ(r∗,r).

Since

ρσ(0, r∗) =
π

2σ

and

ρσ(r∗, r) = σ−1

(
rσ2 +

1

2
log(rσ2) +

1

2
− log(2) +O(rσ2)

)
,

the predictions of WKB exactly match the asymptotics (1.11), where σ−
1
2 may be regarded as

the usual WKB prefactor of Q− 1
4 . Precisely within equation (1.7), the role of the µ multiplier

is adjusting the distorted Fourier basis in a manner that leads to

lim
r→∞

|e(σ, r) − c0 sin(Θ(σ, r))| = 0

for all σ > 0 and an absolute constant c0 ∈ R.

To make the approximation precise, we use the Liouville-Green(LG) transform [32, Ch. 6],

which is standard practice for semi-classical problems with a simple turning point. Indeed,

similar semi-classical problems with inverse square or exponentially decaying potentials have

been studied in [6,7,9,38] (see Section 2 for a discussion on the differences). The LG transform

is a change of variables ζ that transforms a second order ODE with a simple turning point into

a perturbed Airy equation of the form

−σ2 d
2f

dζ2
= (ζ + σ2V (ζ))f
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for a suitable potential V . In this way, we obtain fundamental systems of solutions to (1.9) with

good asymptotics on both sides of the turning point, see Proposition 2.7 and Proposition 2.11.

Unfortunately, the approximation on the left side of the turning point cannot be extended all

the way to the origin due to the local singularity in V (ζ) introduced by the Coulomb potential.

However, referring to Nakamura’s investigation in [31], it is reasonable to anticipate a rapid decay

of e(σ, r) as σ approaches 0. In [31], the resolvent operator of −∆+W where |W (x)| . 〈x〉−ρ

for ρ ∈ (0, 2) is studied. It was proved that if W is also positive then there exist β, γ > 0, such

that

‖F (|x| ≤ βσ2)F ((−∆+W ) ≤ σ2)‖L2→L2 . exp(−γσ
2
ρ
−1

), σ2 ∈ (0, 1](1.14)

where F (A) denotes the characteristic function of the set A. It is important to note that the

Coulomb potential takes the form of W with ρ = 1 as x becomes large. Therefore, we should

compare our estimate on e(σ, r) with e−
γ
σ as σ → 0. With this consideration, we employ

a different transformation of (1.9) around zero and derive and approximation to e(σ, r) via

modified Bessel functions [8, Ch.10] that captures the expected behavior and is unable to be

extended up to the turning point. We then connect this approximation to the Airy approximation

mentioned above. Lemma 2.4 below provides a complementary perspective to the estimate given

in (1.14).

It appears to us that one cannot avoid two connection problems when considering potentials

that decay like r−1. Indeed, in [33], the same problem arose while performing a turning point

analysis of a similar ODE arising in the context of the Klein-Gordon equation on a stationary

spherically symmetric black hole. The approximations in terms of Airy and Bessel functions

obtained in Section 5 of that work are similar to those we obtain in Section 2.

We also mention that while approximations of Coulomb eigenfunctions via Bessel and Airy

functions have appeared in the literature since the 50’s [1,12,13], the form of these approximation

are completely unsuitable for use inside the oscillatory integral (1.6) as we require explicit

estimates of C2-errors in both r and the semi-classical parameter σ. To the best of our knowledge,

the approximations derived in Sections 2 and 3 are novel. In particular, the results in the

aforementioned references cannot be applied directly in the proof of estimate (1.8), for which

one needs the control of several derivatives in order to extract the time decay from the phase.

See Section 4 for the oscillatory estimates that lead to the proof of (1.8).

1.4. Notation and conventions. For the benefit of the reader, we define here the notation

and conventions we use throughout this paper:

• 〈x〉 = (1 + x2)
1
2 .
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• f(x) . g(x) indicates that there exists some constant C > 0 so f(x) ≤ Cg(x) for all x

in some specified domain. We will also use this notation for functions that depend on

several variables.

• f(x) ∼ g(x) indicates that cg(x) ≤ f(x) ≤ Cg(x) for some C > c > 0 independent of x.

• a(x, σ) = Ok(σ
mxp) indicates that |∂jσ{a(x, σ)}| . σm−jxp for j = 0, 1, . . . , k.

• χc(x) : R+ → R is a smooth cut-off function supported on [0, c] that is equal to 1 when

x ≤ 2c
3 , and χ̃c(x) = 1− χc(x).

• For two functions f(x) and g(x), W [f, g](x) denotes their Wronskian

W [f, g](x) = f(x)g′(x)− f ′(x)g(x)

1.5. Organization of the paper. The paper is organized as follows. In Sections 2 and 3,

we derive approximations to the Whittaker M-function e(σ, r) for small and large energies σ,

respectively. We devote Section 4 to the proof of our main Theorem 1.1. For this purpose,

we employ the previous eigenfunction approximations to estimate the oscillatory integral (1.8),

which leads immediately to the estimate (1.3). Finally, in an Appendix, we provide the details

on the construction of the distorted Fourier basis (1.7) and thus demonstrate the form of the

kernel Kt.

Acknowledgement. This research was conducted as part of the Brown-Yale PDE seminar.

We thank the other participants for stimulating discussions. We are particularly grateful for

the organizers, Benôıt Pausader and Wilhelm Schlag, who suggested this problem and provided

guidance in the writing of this paper. We also thank Wilhelm for notes that formed the basis

of the Appendix and Haram Ko for helpful revisions to those notes.

2. Eigenfunction approximation: Small Energies

The main aim of this section is to find a good approximation for the distorted Fourier basis

e(σ, r) = −iσ− 1
2 [e

π
σ − 1]−

1
2M i

2σ
, 1
2
(2iσr) when σ < c for some sufficiently small c. The princi-

pal findings from this section that we employ for the analysis of the oscillatory integrals are

summarized in Proposition 2.13, Corollary 2.14, and Corollary 2.17.

In the following section, we consider q = 1. In particular, we construct approximate solutions

to the ODE

−f ′′(r) + f(r)

r
= σ2f(r)(2.1)

for σ small.

It is convenient to change to the variable x = σ2r whereupon (2.1) becomes

−σ2f ′′(x) + (x−1 − 1)f(x) = 0 .(2.2)
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As σ → 0, (2.2) is a semi-classical problem with a simple turning point at x = 1. Thus, we use

the Liouville-Green transform to obtain solutions in terms of Airy functions, which is standard

practice for such ODEs (see Chapter 11 in [32]). In this section, we closely follow [7] where a

similar analysis is performed for an ODE with a potential with r−2 asymptotics. Unlike in [7],

we cannot extend the Airy function approximation to a neighborhood of x = 0. Indeed, the

error in the approximation blows up in σ as x → 0 due to the exponential growth of Bi(z) as

z → ∞, see Proposition 2.7. Therefore, in this regime we resort to an approximation in terms

of the modified Bessel function I1. Note that Erdélyi and Swanson use I1 in [13] to approximate

the Whittaker function M i
2σ

, 1
2
(2iσr), but the error term derived there is not suitable for our

purposes. Therefore, our analysis in the next section may be regarded as a refined version of

theirs.

2.1. Bessel function approximation: x≪ 1. In this section, we approximate e(σ, r) in terms

of the modified Bessel function I1 when x ∈ [0, δ] for some δ < 1. Let Q(x) = x−1 − 1 and for

0 ≤ x ≤ 1 define

η(x) =

x∫

0

√
Q(y) dy .(2.3)

The properties of this function are summarized in the following lemma:

Lemma 2.1. The map η is a smooth transformation from [0, 1] to [0, π2 ] and with respect to the

change of variables

ω(η) = p
1
2 f, p =

η′

η

(2.2) transforms to

σ2
(
ω̈(η) +

ω̇(η)

η

)
− ω(η) = σ2V−(η)ω(η)(2.4)

where

V−(η) = η−1p−
1
2
dp

1
2

dη
+ p−

1
2
d2p

1
2

dη2

Here, ˙ represents the derivative with respect to η and ′ the derivative with respect to x.

Furthermore, we may write

V−(η) =
1

η2
+ Ṽ−(η)

for Ṽ− smooth on any interval of the form [0, δ], δ < π
2 .

Proof. The smoothness of η is clear. Furthermore, one computes that

ω̇ = η−1p−
1
2 f ′ +

dp
1
2

dη
f
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ω̈ = −η−2p−
1
2 f ′ − η−1p−1dp

1
2

dη
f ′ + η−2p−

3
2 f ′′ + η−1p−1dp

1
2

dη
f ′ +

d2p
1
2

dη2
f

= η−2p−
3
2 f ′′ − η−1ω̇ +

(
η−1p−

1
2
dp

1
2

dη
+ p−

1
2
d2p

1
2

dη2

)
ω

and thus, using that σ2f ′′ = Qf and that (η′)2 = Q, the above expression for ω̈ may be rewritten

as (2.4).

Furthermore, by the chain rule, one can calculate

V−(η) =
1

4η2
− 3

4

(η′′)2

(η′)4
+

1

2

η′′′

(η′)3

=
1

η2
+
[
− 3

4

(η′′)2

(η′)4
+

1

2

η′′′

(η′)3
− 3

4η2

]
=

1

η2
+ Ṽ−(η) .

Moreover, since η(x) = 2x
1
2 + O∞(x3/2) for x < 1, one has |∂jηṼ−(η)| . 1 for j = 0, 1, . . . for

η < π/2. �

With Lemma 2.1 in hand, we look for the solution to (2.4) that is relevant to e(σ, r). Recall

that the equation (2.1) has a basis of solutions given by M i
2σ

, 1
2
(2ix/σ), which is a multiple of

e(σ, x/σ2), and W i
2σ

, 1
2
(2ix/σ). For any fixed σ, the first one vanishes to first order at x = 0

whereas the latter is non-vanishing there [8, (13.14.17)]. Transforming these solutions under the

change of variables defined in the above Lemma, the relation p
1
2 ∼ x−

1
2 shows that (2.4) must

have two linearly independent solutions φ− and φ+ satisfying the asymptotics

φ−(σ, η) ∼ η and φ+(σ, η) ∼ η−1 .(2.5)

as η → 0. Therefore, φ− is characterized, up to scaling, as the unique solution to (2.4) that is

vanishing (or even finite) at η = 0. In the following proposition we identify φ− in terms of I1

and connect it to e(σ, x/σ2) using

e(σ, x/σ2) = −iσ− 1
2 [e

π
σ − 1]−

1
2M i

2σ
, 1
2
(2ix/σ)(2.6)

= 2σ−
3
2 [e

π
σ − 1]−

1
2x(1 +O(x/σ)) as x→ 0.

which follows from (1.10)

Proposition 2.2. For any δ ∈ (0, π2 ), there exists c > 0 such that for all σ ∈ [0, c), on η ∈ [0, δ],

e(σ, x/σ2) has the form

e(σ, x/σ2) = 2
√
2σ−

1
2 [e

π
σ − 1]−

1
2

( η
η′

) 1
2
I1(η/σ)(1 + a−(σ, η)) ,(2.7)

where ρ = σ−1η, I1 is the modified Bessel function of the first kind, and a− is a smooth function

satisfying the bounds

|a−(σ, η)| . σ, |ȧ−(σ, η)| . σ, |ä−(σ, η)| . 1,
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|∂σ{a−(σ, η)}| . 1, |∂σ{ȧ−(σ, η)}| . σ−2, |∂2σ{a−(σ, η)}| . σ−2

uniformly on [0, δ].

Remark 2.3. We remark that one can see from the calculations in Lemma 2.1 that

Ṽ− = O((η − π/2)−3) as η → π/2. This is the main reason why we cannot extend the domain

of η past the turning point η = π
2 .

Proof. In the variable ρ = σ−1η, the equation (2.4) becomes the perturbed Bessel equation

∂2ρ{ω(ρ)} + ρ−1∂ρ{ω(ρ)} − (ρ−2 + 1)ω(ρ) = σ2Ṽ−(σρ)ω(ρ) .

A fundamental system for the homogeneous equation

∂2ρ{ω(ρ)} + ρ−1∂ρ{ω(ρ)} − (ρ−2 + 1)ω(ρ) = 0

is given by modified Bessel functions of first order I1(ρ),K1(ρ) so that by variation of parameters,

the function

φ−(σ, ρ) = I1(ρ) + σ2
ρ∫

0

[−I1(ρ)K1(u) +K1(ρ)I1(u)]Ṽ−(σu)φ−(σu)

W (K1(u), I1(u))
du

solves (2.4) (provided that the integral on the right converges) and vanishes at ρ = 0. Evaluating

the Wronskian via [8, (10.28.2)], plugging in the ansatz φ−(σ, ρ) = I1(ρ)(1 + σa−(σ, ρ)), and

noting that I1(u) has no real zeros we obtain the equation for a−(σ, η)

a−(σ, η) = σ2
ρ∫

0

u[K1(u)I1(u)− I−1
1 (ρ)K1(ρ)I

2
1 (u)]Ṽ−(σu)(1 + a−(σ, σu)) du(2.8)

=: σ2
ρ∫

0

M(σ, u)(1 + a−(σ, σu))du .

We will first prove that a−(σ, η) is well-defined and bounded by analyzing the leading term

a−,0(σ, η) := σ2
ρ∫

0

u[K1(u)I1(u)− I−1
1 (ρ)K1(ρ)I

2
1 (u)]Ṽ−(σu)du .(2.9)

For this, we record the following bounds on I1 and K1:

|∂ju{K1(u)}| . u−1−j〈u〉j+ 1
2 e−u, j = 0, 1, 2...

|∂ju{I1(u)}| ∼ u1−j〈u〉j− 3
2 eu, j = 0, 1,

|∂2u{I1(u)}| . u〈u〉− 3
2 eu ,

(2.10)

which may easily be deduced from [8, (10.30.1-2) and (10.40.1-2)]. In particular, they imply

that

|I1(u)K1(u)| . 〈u〉−1
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|I−1
1 (u)K1(u)| . ρ−2〈ρ〉2e−2ρ

|I21 (u)| . u2〈u〉−3e2u .

Therefore, since by Lemma 2.1 Ṽ−(σu) is bounded for u ≤ ρ, which is in turn less than σ−1δ,

we may write

|a−,0(σ, η)| . σ2
ρ∫

0

u 〈u〉−1 du+ σ2ρ−2 〈ρ〉2 e−2ρ

ρ∫

0

u3 〈u〉−3 e2udu

. σ2〈ρ〉+ σ2 . σ .

(2.11)

Moreover, as x → 0, we have |a−,0(σ, η)| . σ2ρ2 . x. These bounds may easily be extended to

a−(σ, η) itself by a contraction argument. In particular, we simply think of (2.8) as the fixed

point equation

a− = T (1) + T (a−)

for the linear operator T given by Ta = σ2
ρ∫
0

M(ρ, u)a(u)du. For σ small enough, our computa-

tions show that T is a contraction on L∞
η [0, δ] and moreover that T (1) lies in this space. This

implies that the L∞ norm of the fixed point, given by a− =
∑∞

n=0 T
n+1(1), is bounded by the

norm of the first term, which is O (σ).

Having established the existence and boundedness of a−(σ, η), we now turn to the bounds on

its derivatives. We first treat the η-derivative. We have that

ȧ−(σ, η) = −σ∂ρ{I−1
1 (ρ)K1(ρ)}

∫ ρ

0
uI21 (u)Ṽ−(σu)(1 + a−(σ, σu))du .(2.12)

To estimate this integral, we use that by (2.10)

|∂ρ{I−1
1 (ρ)K1(ρ)}| . ρ−3〈ρ〉3e−2ρ

so that

|ȧ−(σ, η)| . σρ−3 〈ρ〉3 e−2ρ

∫ ρ

0
u3 〈u〉−3 e2u du . σ .

Differentiating again, we find that

ä−(σ, η) = −∂ρ{I−1
1 (ρ)K1(ρ)}ρI21 (ρ)Ṽ−(η)(1 + a−(σ, η))

− ∂2ρ{I−1
1 (ρ)K1(ρ)}

ρ∫

0

uI21 (u)Ṽ−(σu)(1 + a−(σ, σu)) du .

By (2.10), the first term is uniformly bounded. For the second, we use

|∂2ρ{I−1
1 (ρ)K1(ρ)}| . ρ−4〈ρ〉4e−2ρ

to argue similarly that the second term is uniformly bounded as well.
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Finally, we estimate the σ-derivatives of a(σ, η). For the first derivative, we have

∂σ{a−(σ, η)} = σ−1(2a−(σ, η) − ηȧ(σ, η))

+ σ2
ρ∫

0

u2[K1(u)− I−1
1 (ρ)K1(ρ)I1(u)]Ṽ

′
−(σu)I1(u)(1 + a−(σ, σu)) du

+ σ2
ρ∫

0

u2[K1(u)− I−1
1 (ρ)K1(ρ)I1(u)]Ṽ−(σu)I1(u)ȧ−(σ, σu)) du

+ σ2
ρ∫

0

u[K1(u)− I−1
1 (ρ)K1(ρ)I1(u)]Ṽ−(σu)I1(u)∂σ{a−(σ, x)}|x=σu du .

=: A1(σ, η) +A2(σ, η) +A3(σ, η) +A4(σ, η)

By the bounds on a(σ, η) and ȧ(σ, η), it is clear |A1(σ, η)| . 1. Since Ṽ− is uniformly smooth by

Lemma 2.1, it is easy to argue as for the bound |a−,0| . σ that |A2(σ, η)| . 1, the only difference

being an extra power of u in the integral. Similarly, |A3(σ, η)| . σ due to the previously derived

bound |ȧ(σ, η)| . σ.

We have shown then that ∂σ{a(σ, η)} satisfies a fixed point equation of the form

∂σ{a−(σ, η)} = O(1) + σ2
ρ∫

0

u[K1(u)− I−1
1 (ρ)K1(ρ)I1(u)]Ṽ−(σu)I1(u)∂σ{a−(σ, σu)} du

and since we have already shown via (2.11) that the last term is bounded in terms of

σ supη∈[0,δ)|∂σ{a−(σ, σu)}|, we may iterate this equation to find that, for σ sufficiently small,

∂σ{a(σ, η)} is uniformly bounded independent of σ on the domain under consideration.

For the mixed σ and η derivative, we first compute that

∂σ{ȧ(σ, η)} = σ−1ȧ(σ, η) − σ−1ηä−(σ, η)

− σ∂σ{I−1
1 (ρ)K1(ρ)}

ρ∫

0

u2I21 (u)Ṽ
′(σu)(1 + a−(σ, σu)) du

− σ∂σ{I−1
1 (ρ)K1(ρ)}

ρ∫

0

u2I21 (u)Ṽ (σu)ȧ−(σ, σu) du

− σ∂σ{I−1
1 (ρ)K1(ρ)}

ρ∫

0

uI21 (u)Ṽ (σu)∂σ{a−(σ, x)}|x=σu du .

The first two terms are bounded by σ−1 and the third and fourth are bounded by a constant

times

σρ−3 〈ρ〉3 e−2ρ

∫ ρ

0
u4 〈u〉−3 e2u du . σ 〈ρ〉2 . σ−1 .
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Similarly, the last term is O(σ−1) from the fact that ∂σ{a(σ, η)} is bounded.

The second σ-derivative is now estimated by differentiating each of Ai for i = 1, 2, 3, 4 in turn.

It is easy to see from the bounds we have already developed that

|∂σ{A1(σ, η)}| . σ−2

the dominant term being σ−1η∂σ{ȧ(σ, η)}. Furthermore,

|∂σ{A2(σ, η)}| . σ−1|A2(σ, η)| +
∣∣∣η∂σ{I−1

1 (ρ)K1(ρ)}
ρ∫

0

u2I21 (u) du
∣∣∣

+ σ2
∣∣∣
∫ ρ

0
u3[−K1(u)I1(u) + I−1

1 (ρ)K1(ρ)I
2
1 (u)] du

∣∣∣

which is in total bounded in terms of σ−1. By the same token,

|∂σ{A3(σ, η)}| . σ−1|A3(σ, η)| + σ
∣∣∣η∂σ{I−1

1 (ρ)K1(ρ)}
ρ∫

0

u2I21 (u) du
∣∣∣

+ σ
∣∣∣

ρ∫

0

u2〈u〉[K1(u)I1(u)− I−1
1 (ρ)K1(ρ)I

2
1 (u)] du

∣∣∣

where we have used that |∂σ{ȧ(σ, η)}| . σ−1. As before, we may argue that all three terms are

bounded by a constant times σ−1. One can also show that

A4(σ, η) = O(σ−1) + σ2
ρ∫

0

u[K1(u)− I−1
1 (ρ)K1(ρ)I1(u)]Ṽ−(σu)I1(u)∂

2
σ{a−(σ, σu)} du

so that

∂2σ{a−(σ, σu)} = O(σ−1) + σ2
ρ∫

0

u[K1(u)− I−1
1 (ρ)K1(ρ)I1(u)]Ṽ−(σu)I1(u)∂

2
σ{a−(σ, σu)} du .

Since the last term is bounded in terms of σ supη∈[0,δ)|∂σ{a−(σ, σu)}|, as before we can iterate

for small enough σ to see that in fact ∂2σ{a−(σ, η)} = O(σ−1), as claimed.

Finally, we match the solution φ−(σ, η) to e(σ, x/σ
2). For any fixed σ, as x→ 0 we have

( η(x)
η′(x)

) 1
2
φ−(ρ) =

√
2x

σ
(1 +O(x/σ)) .

as a consequence of [8, (10.30.1)]. Comparing this expansion to (2.6) we obtain (2.7). �

Before we focus on the other regimes of x, we give the following bounds which will be useful

for the oscillatory estimates.
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Lemma 2.4. For any δ ∈ (0, 1) there exists c > 0 and ε > 0 so that

|∂jσ{e(σ, r)}| . e−
ε
σ r, j = 0, 1, 2(2.13)

uniformly for σ ∈ [0,min{c, δr− 1
2 }] and r > 0.

Proof. We will use throughout the proof that we are considering σ so that x = σ2r ≤ δ < 1. First,

this allows us to apply Proposition (2.2) on the interval [0, η(δ)] to obtain the representation

(2.7). By series expansion,

η(σ2r) = 2(σ2r)
1
2 − 1

3
(σ2r)

3
2 +O2((σ

2r)
5
2 )

which gives

( η
η′

) 1
2
(σ2r) =

√
2σr

1
2 (1 +O2(σ

2r)) .

Therefore, using (2.10) we obtain

|I1
(η(σ2r)

σ

)
| . min

{
1,
∣∣∣
η(σ2r)

σ

∣∣∣
}
e

η(σ2r)
σ . e

π
2σ

− ε
σ min{1, r 1

2 } .

for ǫ < π
2 − η(δ). Hence, by (2.7)

|e(σ, σr)| . σ−
1
2 [e

π
σ − 1]−

1
2σr

1
2 |I1

(η(σ2r)
σ

)
|(1 + a−(σ, η))| . e−

ε
σ r

1
2 min{1, r 1

2} . e−
ε
σ r.

This establishes (2.13) for j = 0.

Next, we estimate the σ-derivative. For the remainder of the proof we suppress the dependence

of η on σ2r. By the chain rule one has

∂σ{I1(η/σ)} = I ′(η/σ)[−σ−2η + σ−1 dη

dσ
] .

and we have | dηdσ | . r
1
2 for σ . r−

1
2 . Therefore, by (2.10)

|∂σ{I1(η/σ)}| . e
π
2σ

− ε
σ σ−1r

1
2

and

|∂σ
{( η

η′

) 1
2
I1(η/σ)

}
| . e

π
2σ

− ε
σ r .(2.14)

Now, we note that,

∂σ{a−(σ, η)} = ∂σ{a−(σ, η(x))}|x=σ2r + ȧ−(σ, η)
dη

dσ
.(2.15)

Therefore,

|∂σ{a−(σ, η(σ2r))}| . 1 + σr
1
2 . 1 .(2.16)

Using (2.14) and (2.16) in (2.7) and applying the product rule, we obtain (2.13) for j = 1.
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For the second derivative in σ, we start by computing

∂2σ{I1(η/σ)} = I ′′1 (η/σ)[−σ−2η + σ−1 dη

dσ
]2 + I ′1(η/σ)[2σ

−3η − 2σ−2 dη

dσ
+ σ−1 d

2η

dσ2
] .

Using (2.10) for j = 2, we have

|I ′′1 (η/σ)[−σ−2η + σ−1 dη

dσ
]2| . e

π
2σ

− ε
σ (σ−1r

1
2 )2 .

Moreover, | d2η
dσ2 | . σ−1r

1
2 , and |I ′1(η/σ)| . e

π
2σ

− ε
σ . Therefore, we have

|∂2σ{I1(η/σ)}| . e
π
2σ

− ε
σσ−2r

and by the chain rule

|∂2σ
{( η

η′

) 1
2
I1

( η
σ

)}∣∣∣ . e
π
2σ

− ε
σ [σ−2r + σ−1r] . e

π
2σ

− ε
σ σ−2r.(2.17)

In the last line we used the fact that σ2r < c and σ < c. Moreover,

(2.18) |∂2σ{a−(σ, η(σ2r))}| . |∂2σ{a−(σ, η(x)}|x=σ2r|+ |∂σ{ȧ−(σ, η)}
dη

dσ
|

+ |ä−(σ, η)
( dη
dσ

)2|+ |ȧ−(σ, η)}
d2η

dσ2
|]

and hence |∂2σ{a−(σ, η(σ2r))}| . σ−2 + σ−2r
1
2 + r . σ−3. Finally, the chain rule together with

(2.17) and (2.18) gives (2.13) for j = 2.

�

2.2. Airy function approximation: x ∼ 1. Let Q(u) = u−1−1 and define the Liouville-Green

transform

ζ(x) = sign(x− 1)

∣∣∣∣∣∣
3

2

x∫

1

√
|Q(u)| du

∣∣∣∣∣∣

2
3

.

Its properties are summarized in the following lemmas:

Lemma 2.5. The map x 7→ ζ(x) defines a smooth change of variables from (0,∞) →
(−(3π4 )

2
3 ,∞). Furthermore, ζ has the explicit form given by

2

3
ζ

3
2 (x) =

√
x(x− 1)− log(

√
x+

√
x− 1), x ≥ 1,(2.19)

−2

3
(−ζ(x)) 3

2 =
√
x(1− x)− 1

2
arccos(2x− 1), x ≤ 1.

The function q = −Q
ζ is non-negative and satisfies

√
q = dζ

dx . Under the transformation

w(ζ) = q
1
4 f , the equation (2.2) becomes

−σ2ẅ(ζ) = (ζ + σ2V )w(ζ)(2.20)
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where

V = −q− 1
4
d2q

1
4

dζ2
.

Here and for the rest of the paper we use ˙= d
dζ .

Proof. The smoothness of ζ is clear away from x = 1 and at this point it is a simple consequence

of the fact that Q vanishes only to first order. Indeed, we may expand
√

|Q| into a series in

powers of
√

|x− 1| and integrate term by term to find that
∫ x

1

√
|Q(u)| du =

2

3
(x− 1)

3
2 (1 +O(x− 1))

from which the claim is immediate. We omit the proof of (2.19) and (2.20) as it can be verified

by differentiation.

�

For reference, we record all of the notation relevant to the Liouville-Green transform:

Q(u) = u−1 − 1, q = −Q
ζ

ζ(x) = sign(x− 1)

∣∣∣∣∣∣
3

2

x∫

1

√
|Q(u)| du

∣∣∣∣∣∣

2
3

w = q
1
4 f, V = −q− 1

4
d2q

1
4

dζ2

.

Lemma 2.6. Let ζ∗ = −
(
3π/4)

2
3 and ζ ∈ (ζ∗, 0] then we have |∂jζV | . 1 for j = 0, 1, 2 . . . .

Proof. We note that as |x−1| < 1, one has ζ ∼ (x−1), and therefore, q
1
4 =

∑∞
k=0 ckζ

k for some

ck ∈ R. This shows that |∂jζV | . 1 in the range of |ζ| < 1. On the other hand, as |x| < 1, one

has (ζ − ζ∗)
3
2 ∼ x, therefore, q

1
4 ∼ (ζ − ζ∗)−

3
8 and V (ζ) ∈ O∞((ζ − ζ∗)−2). This shows that

|∂jζV | . 1 as long as |ζ − ζ∗| > δ > 0. �

We may now construct a basis of solutions to (2.20) in terms of the Airy functions Ai and Bi

whose properties may be found in [32].

Proposition 2.7. Let δ > 0. Then there exists c > 0 such that for all σ ∈ [0, c], a fundamental

system of solutions to (2.20) in the range ζ∗ + δ < ζ ≤ 0 is given by

φ1(σ, ζ) = Ai(τ)(1 + σa1(σ, ζ))

φ2(σ, ζ) = Bi(τ)(1 + σa2(σ, ζ))
(2.21)

where τ := −σ− 2
3 ζ and a1 and a2 are smooth functions satisfying the bounds

|aj(σ, ζ)| . 1, |ȧj(σ, ζ)| . σ−
1
3 , |äj(σ, ζ)| . σ−

4
3 ,



L1 → L∞ DISPERSIVE ESTIMATES FOR COULOMB WAVES 17

|∂σ{aj(σ, ζ)}| . σ−
4
3 , |∂σ{ȧj(σ, ζ)}| . σ−7/3, |∂2σ{aj(σ, ζ)}| . σ−

10
3

for j = 1, 2 uniformly on [ζ∗ + δ, 0].

Remark 2.8. The range of ζ corresponds to x ∈ [δ′, 1] for some δ′ > 0 independent of σ. The

restriction is designed to avoid the singularity of V at ζ = ζ∗, see the proof of Lemma 2.6. Note

also that this approximation is only possible because τ > 0 for ζ < 0 and thus the Airy functions

do not have zeroes in this regime.

Proof. Write φ1,0(σ, ζ) = Ai(τ) and φ2,0(σ, ζ) = Bi(τ). The variable τ is chosen so that

−σ2φ̈j,0 − ζφj,0 = 0

for each of j = 1, 2 where ˙= ∂
∂ζ . Therefore,

−σ2φ̈j − ζφj =
(
σ3φ2j,0ȧj

).
/φj,0

and plugging the representations (2.21) into (2.20) yields the equation for aj

(
φ2j,0ȧj

).
= −σ−1V φ2j,0(1 + σaj) .(2.22)

The solution to this equation for j = 2 with a2(σ, 0) = 0 and ȧ2(σ, 0) = 0 is given by

a2(σ, ζ) = −σ 1
3

−σ− 2
3 ζ∫

0

Bi2(u)
[ −σ− 2

3 ζ∫

u

Bi−2(v) dv
]
V (−σ 2

3u)(1 + σa2(σ,−σ
2
3u)) du .(2.23)

We now recall the following expansions of the Airy functions found in [32]:

Bi(x) = π−
1
2x−

1
4 e

2
3
x

3
2 (1 +O(x−

3
2 )) as x→ ∞(2.24)

Bi(x) ≥ Bi(0) > 0, for x ≥ 0

Ai(x) =
1

2
π−

1
2x−

1
4 e−

2
3
x

3
2 (1 +O(x−

3
2 )) as x→ ∞(2.25)

Ai(x) > 0 for x ≥ 0

These asymptotics and the identity, which holds for 0 ≤ x0 < x1

x1∫

x0

Bi−2(y) dy = π−1

(
Ai

Bi
(x0)−

Ai

Bi
(x1)

)
(2.26)

imply that for x0 ≥ 0
∣∣∣∣∣∣
Bi2(x0)

x1∫

x0

Bi−2(y) dy

∣∣∣∣∣∣
. 〈x0〉−

1
2
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so that
∣∣∣∣∣∣∣∣

∫ −σ− 2
3 ζ

0
Bi2(u)

[ −σ− 2
3 ζ∫

u

Bi−2(v) dv
]
f(u) du

∣∣∣∣∣∣∣∣
.
〈
σ−

2
3 ζ
〉 1

2 ‖f‖∞ .(2.27)

Moreover,
∣∣∣∣∣∣
Bi−2(x0)

x0∫

0

Bi2(y) dy

∣∣∣∣∣∣
. 〈x0〉−

1
2(2.28)

which comes from inserting the above asymptotics into the integral and then computing for

x > 1

x
1
2 e−

4
3
x

3
2

x∫

1

y−
1
2 e

4
3
y
3
2 dy . x

1
2 e−

4
3
x

3
2

x
3
2∫

1

u−
2
3 e

4
3
u du = x

1
2 e−

4
3
x

3
2



3

4
u−

2
3 e

4
3
u

∣∣∣∣
x

3
2

1

+
2

3

x
3
2∫

1

u−
5
3 e

4
3
u du




. x
1
2 e−

4
3
x

3
2

(
x−1e

4
3
x

3
2

)
= x−

1
2

To estimate (2.23), we let

a2,0(ζ) := −σ 1
3

−σ− 2
3 ζ∫

0

Bi2(u)
[ −σ− 2

3 ζ∫

u

Bi−2(v) dv
]
V (−σ 2

3u) du

be the leading term, where we have suppressed the σ-dependence of a2 for now. By Lemma 2.6

V (−σ 2
3u) is bounded on the domain of integration when ζ ∈ [ζ∗ + δ, 0] so using (2.27) we have

that

|a2,0(ζ)| . σ
1
3

〈
σ−

2
3 ζ
〉 1

2
. 1 .(2.29)

Now, a contraction argument will show that |a2(ζ)| . 1, as claimed.

We next consider the ζ derivative of a2(ζ). One has that

ȧ2(ζ) = σ−
1
3 Bi−2(−σ− 2

3 ζ)

−σ− 2
3 ζ∫

0

Bi2(u)V (−σ 2
3u)(1 + σa2(−σ

2
3u)) du(2.30)

so that, since V is bounded and we have shown that a2 itself is bounded, we see that by (2.28)

|ȧ2(ζ)| . σ−
1
3

〈
σ−

2
3 ζ
〉− 1

2
,

which is less than σ−
1
3 , as claimed.

For the second ζ-derivative, we use (2.22) to write

ä2(ζ) = −σ−1V (ζ)(1 + σa2(ζ))− 2σ−1[φ̇2,0φ
−1
2,0](ζ)ȧ2(ζ) .
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The first term is clearly bounded by σ−1 while the second is bounded in terms of

σ−1|Bi′(−σ− 2
3 ζ)Bi−1(−σ− 2

3 ζ)| . σ−
4
3 .

By [8, (9.7.8)], |Bi′(−σ− 2
3 ζ)| .

〈
σ−

2
3 ζ
〉 1

4
e

2
3
σ−1|ζ|

3
2 , which shows that |ä2(ζ)| . σ−

4
3 .

Now, we consider the σ-derivatives of a2. Let F (σ, u) = V (−σ 2
3u)(1 + σa2(σ,−σ

2
3u)), then

by (2.23) we can compute

∂σ{a2(σ, ζ)} = − 1

3σ
[a2(σ, ζ)− 2ζȧ2(σ, ζ)]

− σ
1
3

−σ− 2
3 ζ∫

0

Bi2(u)
[ −σ− 2

3 ζ∫

u

Bi−2(v) dv
]
∂σ{F (u, σ)} dσ =: B1(σ, ζ) +B2(σ, ζ)

Using the bounds previously established for a2(σ, ζ), we can deduce |B1(σ, ζ)| . σ−
4
3 . Moreover,

we may write

∂σ{F (u, σ)} = O(σ−
1
3 〈u〉) + σV (−σ 3

2u)∂σ [a2(σ, v)]
v=−σ

3
2 u
.(2.31)

Therefore, by (2.27) we have

B2(σ, ζ) = σ
1
3 〈σ− 2

3 ζ〉 3
2 +−σ 4

3

−σ− 2
3 ζ∫

0

Bi2(u)
[ −σ− 2

3 ζ∫

u

Bi−2(v) dv
]
V (−σ 3

2u)∂σ [a2(σ, v)]
v=−σ

3
2 u
du

Letting

T (a) := σ
1
3

−σ− 2
3 ζ∫

0

Bi2(u)
[ −σ− 2

3 ζ∫

u

Bi−2(v) dv
]
V (−σ 3

2u)a(σ, u) du

we obtain

∂σ{a2(σ, ζ)} = σ−1 + σT
(
∂σ[a2(σ, v)]

v=−σ
3
2 u

)
(2.32)

Now, by contraction argument we obtain that |∂σ{a2(σ, ζ)}| . σ−
4
3 .

Proceeding onward, we differentiate (2.30) with respect to σ to find that

∂σ{ȧ2(σ, ζ)} = −1

3
σ−1ȧ2(σ, ζ) +

2

3
σ−

5
3 ζ Bi′(−σ− 2

3 ζ)Bi−1(−σ− 2
3 ζ)ȧ2(σ, ζ)

+
2

3
σ−2ζV+(ζ)(1 + σa2(σ, ζ))

+ σ−
1
3 Bi−2(−σ− 2

3 ζ)

−σ− 2
3 ζ∫

0

Bi2(u)∂σ{F (u, σ)} du .
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It is easy to see using previously derived inequalities that each term is at least O(σ−2) except

for the second term. For that, we write

|σ− 5
3 ζ Bi′(−σ− 2

3 ζ)Bi−1(−σ− 2
3 ζ)ȧ2(σ, ζ)| . σ−2ζ

〈
σ−

2
3 ζ
〉 1

2 |ȧ2(σ, ζ)|

and recall that |ȧ2(σ, ζ)| . σ−
1
3

〈
σ−

2
3 ζ
〉− 1

2
. It follows then that |∂σ [ȧ2(σ, ζ)}| . σ−2.

For the second σ-derivative of a2, we differentiate each of Bj(σ, ζ) j = 1, 2 separately. First,

it is easy to see that

|∂σ{B1(σ, ζ)}| . σ−1|B1(σ, ζ)|+ σ−1(|∂σ{a2(σ, ζ)}| + σ−1|∂σ{ȧ2(σ, ζ)}|

which is in total O(σ−3), the dominant term being the last term. Next, differentiating B2(σ, ζ)

we have

∂σ{B2(σ, ζ)} =
1

3σ
B2(σ, ζ) +

2

3
σ−

4
3 ζ Bi−2(−σ− 2

3 ζ)

−σ− 2
3 ζ∫

0

Bi2(u)∂σ{F (u, σ)} du(2.33)

+σ
1
3

∫ τ

0
Bi2(u)

[∫ τ

u
Bi−2(v) dv

]
∂2σ{F (u, σ)} du .

Similar calculations to those employed in the estimation of B2(σ, ζ) demonstrate that the initial

two terms on the right-hand side of the equation in (2.33) are O(σ−
7
3 ). To estimate the last

term, we compute

∂2σ{F (u, σ)} = O(σ−1〈u〉2 + σ2) + σV (−σ 2
3u)∂2σ [a2(σ, v]v=−σ

2
3 u
.

Hence, using (2.28), we deduce the following expressions:

∂σ{B2(σ, ζ)} = O(σ−
7
3 ) + σT

(
∂2σ[a2(σ, v]v=−σ

2
3 u

)
.

This, in turn, leads to:

∂2σ[a2(σ, ζ] = O(σ−3) + σT
(
∂2σ[a2(σ, v]v=−σ

2
3 u

)
.

which with a contraction argument, yields |∂2σ[a2(σ, ζ]| . σ−3.

Having proven all of the stated bounds on a2, we now turn to a1. We make the reduction

ansatz φ1(ζ) = g(ζ)φ2(ζ) and find that g solves (φ22ġ)̇ = 0. To simplify the analysis that follows,

we extend the functions φ1 and φ2, defined at the moment on [ζ∗ + δ, 0], to the interval (−∞, 0]

in such a way that the proven bounds still hold. We then choose the solution g of the form

g(ζ) = π

∞∫

τ

Bi−2(u)(1 + a2(−σ
2
3u))−2 du ,
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which yields

φ1(ζ) = πBi(τ)(1 + σa2(ζ))

∞∫

τ

Bi−2(u)(1 + σa2(−σ
2
3u))−2 du .(2.34)

Here, we suppressed the σ dependence of a2. We now write (1 + σã2)
−2 = 1 + σã2 and for

σ sufficiently small, ã2 satisfies all of the same bounds as a2 because |a2| . 1. Recalling the

identities

d

dx

{Ai
Bi

(x)
}
= −π−1Bi−2(x),

d

dx

{Bi
Ai

(x)
}
= π−1 Ai−2(x)(2.35)

and the fact that Ai(u) and Bi(u) are strictly positive for u ≥ 0, we integrate by parts to see

that

(2.36) π

∞∫

τ

Bi−2(u)(1 + σã2(−σ
2
3u)) du =

[
Ai

Bi
(u)(1 + σã2(−σ

2
3u))

] ∣∣∣∣
τ

∞

− σ
5
3

∞∫

τ

Ai

Bi
(u) ˙̃a2(−σ

2
3u) du .

Therefore,

φ1(ζ) = Ai(τ)(1 + σa2(ζ))
[
(1 + σã2(ζ))− σ

5
3
Bi

Ai
(τ)

∞∫

τ

Ai

Bi
(u) ˙̃a2(−σ

2
3u) du

]

From this, we infer that

a1(ζ) = a2(ζ) + (1 + σa2(ζ))
[
ã2(ζ) + σ

2
3
Bi

Ai
(τ)

∞∫

−σ− 2
3 ζ

Ai

Bi
(u) ˙̃a2(−σ

2
3u) du

]

:= a2(ζ) + (1 + σa2(ζ)) [ã2(ζ) + ã1(ζ)]

so it suffices to control

ã1(ζ) = σ
2
3
Bi

Ai
(τ)

∫ ∞

τ

Ai

Bi
(u) ˙̃a2(−σ

2
3u) du .

To begin with, we use that | ˙̃a2(ζ)| . σ−
1
3 to write

|ã1(ζ)| . σ
1
3 e

4
3

〈

σ− 2
3 ζ

〉
3
2
∫ ∞

−σ− 2
3 ζ
e−

4
3
〈u〉

3
2 du

≤ σ
1
3 e

4
3

〈

σ− 2
3 ζ

〉

3
2 〈

σ−
2
3 ζ
〉− 1

2

∞∫

−σ− 2
3 ζ

e−
4
3
〈u〉

3
2 〈u〉

1
2 du

. σ
1
3

〈
σ−

2
3 ζ
〉− 1

2
.
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We compute further that

˙̃a1(ζ) = −π−1σ−
2
3 (Ai Bi)−1(τ)ã1(ζ) + ˙̃a2(ζ) .(2.37)

The second term we have already bounded by σ−
1
3 and the first obeys this bound as well because

|(Ai Bi)−1(x)| . 〈x〉
1
2 . Proceeding onward,

∂2ζ {ã1(ζ)} = π−1σ−
4
3
d

du

[
(Ai Bi)−1(u)

]
|u=τ ã1(ζ)− π−1σ−

2
3 (Ai Bi)−1(τ) ˙̃a1(ζ) + ¨̃a2(ζ) .

From the fact that | d
du{(Ai Bi)−1(u)}| . 〈u〉−

1
2 , it is easily checked as before that each term is

bounded by at worst σ−
4
3 , thus establishing all of the desired bounds on the ζ-derivatives of ã1.

For the σ-derivatives, it is convenient to first rewrite

ã1(σ, ζ) =
Bi

Ai
(τ)

∫ ∞

−ζ

Ai

Bi
(σ−

2
3 v) ˙̃a2(σ,−v) dv ,

so that

∂σ{ã1(σ, ζ)} =
2

3π
σ−

5
3 ζ(AiBi)−1(τ)ã1(σ, ζ)

+
2

3π
σ−

5
3
Bi

Ai
(τ)

∫ ∞

−ζ
Bi−2(σ−

2
3 v)v ˙̃a2(σ,−v) dv

+
Bi

Ai
(τ)

∫ ∞

−ζ

Ai

Bi
(σ−

2
3 v)∂σ{ ˙̃a2}(σ,−v) dv

=: D1(σ, ζ) +D2(σ, ζ) +D3(σ, ζ) .

Arguing as before, it is easy to see that |D1(σ, ζ)| . σ−
4
3 whereas

|D2(σ, ζ)| . σ−
2
3
Bi

Ai
(τ)

∞∫

τ

Bi−2(v)v dv = σ−
2
3
Bi

Ai
(τ)


π−1Ai

Bi
(τ)τ −

∞∫

τ

Ai

Bi
(u) du


 . σ−

4
3(2.38)

where the second term in brackets may be treated as the original estimate of ã1. By using that

|∂σ{ ˙̃a2(σ, ζ)}| . σ−2, we may similarly argue that |D3(σ, ζ)| . σ−
4
3 . Thus, we conclude that

|∂σ{ã1(σ, ζ)}| . σ−
4
3 .

For the mixed derivative ∂σ{ ˙̃a1(σ, ζ)}, we differentiate (2.37) to find that

∂σ{ ˙̃a1(σ, ζ)} =
2

3π
σ−

5
3 (Ai Bi)−1(τ)ã1(σ, ζ) +

2

3π
σ−

7
3 ζ

d

du
{(Ai Bi)−1(u)}|u=τ ã1(σ, ζ)

− π−1σ−
2
3 (Ai Bi)−1(τ)∂σ{ã1(σ, ζ)}+ ∂σ{ ˙̃a2(σ, ζ)} ,

and it is merely a matter of collecting previously derived bounds to deduce that each term is

bounded by σ−2, except the third term is bounded by σ−7/3.

Finally, to bound the second σ-derivative of ã2, we comment on the derivatives of each

of Di(σ, ζ), i = 1, 2, 3 separately. The expression ∂σ{D1(σ, ζ)} is essentially the same as
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∂σ{ ˙̃a2(σ, ζ)} with the loss of an additional σ power, so it is bounded in terms of σ−3. For

D2(σ, ζ), one differentiates to find that

|∂σ{D2(σ, ζ)}| . σ−1|D2(σ, ζ)|+ σ−
5
3 (Ai Bi)−1(τ)|D2(σ, ζ)|+

σ−
10
3
Bi

Ai
(τ)

∫ ∞

−ζ

d

du
{Bi−2(u)}|

σ− 2
3 v
v2 dv + σ−4Bi

Ai
(τ)

∫ ∞

−ζ
Bi−2(σ−

2
3 v)v dv ,

where in the second integral we have used the bound | ˙̃a2(σ, ζ)| . σ−2. Collecting bounds easily

shows that the first term is bounded by σ−
7
3 and the second by σ−

10
3 . The first integral is

bounded in terms of

σ−
4
3
Bi

Ai
(τ)

∞∫

τ

d

du
{Bi−2(u)}u2 du = σ−

4
3
Bi

Ai
(τ)


Bi−2(τ)τ2 − 2

∞∫

τ

Bi−2(u)u du


 . σ−

8
3

where we may bound the second term as in (2.38). Similarly, the second integral is bounded by

σ−10/3.

We now compute

∂σ{D3(σ, ζ)} =
2

3π
σ−

5
3 ζ(AiBi)−1(τ)D3(σ, ζ) +

2

3π
σ−

5
3
Bi

Ai
(τ)

∫ ∞

−ζ
Bi−2(σ−

2
3 v)v∂σ{ ˙̃a2(σ,−v} dv

+
Bi

Ai
(τ)

∫ ∞

−ζ

Ai

Bi
(σ−

2
3 v)∂2σ{ ˙̃a2(σ,−v)} dv .

The first two terms are easily bounded by σ−
10
3 . Using that ∂2σ{ ˙̃a2}(σ,−v) =

∂
∂u{∂2σ{ã2(σ, u)}}|u=−v , we integrate by parts in the last term to rewrite it as

Bi

Ai
(τ)

(
Ai

Bi
(τ)∂2σ{ã2(σ, ζ)} − π−1σ−

2
3

∫ ∞

−ζ
Bi−2(σ−

2
3 v)∂2σ{ã2(σ,−v)} dv

)
,

which is controlled by ∂2σ{ã2(σ, ζ)} = O(σ−3). It follows then that ∂2σ{ ˙̃a2} = O(σ−
10
3 ). This was

the last bound we needed to demonstrate, so the proof of the lemma is complete. �

Corollary 2.9. Let σ be sufficiently small. Then for x ∈ [12 , 1 + δ],

e(σ, r(x)) = A(σ)(q(x))−
1
4φ1(σ, x) +B(σ)(q(x))−

1
4φ2(σ, x) ,(2.39)

A(σ) = σ−
1
6 (2 +O(σ)), B(σ) = O

(
σ

5
6 e−σ−1(π

2
−1)
)
.

Proof. We match the Bessel function approximation of e(σ, r(x)) to the basis

{q− 1
4φ1(τ), q

− 1
4φ2(τ)} at x = 1

2 . We have that

e(σ, r(1/2)) =
√
2σ−

1
2 [e

π
σ − 1]−

1
2
√
η∗I1(σ

−1η∗)(1 + a(σ, η∗)) ,(2.40)

where η∗ = η(12 ) and we have used that η′(12 ) = 1 because η′ =
√
Q. Using [8, (10.40.1)], we

have from (2.40) that

e(σ, r(
1

2
)) = 2

√
2[e

π
σ − 1]−

1
2
√
η∗
e

η∗
σ σ

1
2

√
2πη∗

(1 +O(σ)) =
2√
π
e

η∗
σ [e

π
σ − 1]−

1
2 (1 +O(σ))
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=
eσ

−1(η∗−
π
2
)

√
π

(2 +O(σ))

and also

∂x[e(σ, r(x))]x= 1
2
= 2

√
2[e

π
σ − 1]−

1
2
√
η∗σ

− 3
2 I ′1(σ

−1η∗)(1 +O(σ)) =
2√
πσ

e
η∗
σ [e

π
σ − 1]−

1
2 (1 +O(σ))

=
eσ

−1(η∗−
π
2
)

√
πσ

(2 +O(σ)) .

We also have that

φ1(σ, ζ(
1

2
)) = q(

1

2
)−

1
4 Ai(σ−

2
3 ζ∗)(1 + a1(σ, ζ∗))

φ2(σ, ζ(
1

2
)) = q(

1

2
)−

1
4 Bi(σ−

2
3 ζ∗)(1 + a2(σ, ζ∗))

where ζ∗ = −ζ(12). Because ζ∗ > 0, we use the asymptotics [8, (9.7.5) and (9.7.6)] to see that

φ1(σ, ζ(x)) = σ
1
6
e−

2ζ
3
2
∗

3σ

2
√
π

(1 +O(σ))

φ2(σ, ζ(x)) = σ
1
6
e

2ζ
3
2
∗

3σ

√
π

(1 +O(σ))

and [8, (9.7.6) and (9.7.8)] for

∂x[φ1(σ, ζ(x))]x= 1
2
= −q− 1

4 (
1

2
)ζ ′(

1

2
)σ−

2
3 Ai′(σ−

2
3 ζ∗)(1 +O(σ)) = σ−

5
6
e−

2ζ
3
2
∗

3σ

2
√
π

(1 +O(σ))

∂x[φ2(σ, ζ(x))]x= 1
2
= −q− 1

4 (
1

2
)ζ ′(

1

2
)σ−

2
3 Bi′(σ−

2
3 ζ∗)(1 +O(σ)) = −σ− 5

6
e

2ζ
3
2
∗

3σ√
π

(1 +O(σ))

from using that q(12) = ζ−1
∗ = [ζ ′(12)]

2. It follows that

W [φ1(σ, ζ(·)), φ2(σ, ζ(·))] = −σ
− 2

3

π
(1 +O(σ))

where W is the Wronskian evaluated at x = 1
2 and also

W [e(σ, r(·)), φ1(σ, ζ(·))] = O

(
σ

1
6 eσ

−1(η∗−
π
2
− 2

3
ζ
3
2
∗ )

)
= O

(
σ

1
6 e−σ−1(π

2
−1)
)

W [e(σ, r(·)), φ2(σ, ζ(·))] = −σ
− 5

6

π
eσ

−1(η∗−
π
2
+ 2

3
ζ
3
2 )(2 +O(σ)) = −σ

− 5
6

√
π
(2 +O(σ))

where the last equality on each line follows from the facts that η∗ − 2
3ζ

3
2
∗ = 1 and η∗ +

2
3ζ

3
2
∗ = π

2 .

Therefore,

A(σ) =
W [e(σ, r(·)), φ2(σ, ζ(·))]
W [φ1(σ, ζ(·)), φ2(σ, ζ(·))]

= σ−
1
6 (1 +O(σ)) ,
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B(σ) = − W [e(σ, r(·)), φ1(σ, ζ(·))]
W [φ1(σ, ζ(·)), φ2(σ, ζ(·))]

= O
(
σ

5
6 e−σ−1(π

2
−1)
)
.

�

2.3. Oscillatory Airy approximation: x≫ 1.

Proposition 2.10. When ζ ≥ 0, the potential V satisfies the bounds

|∂jζV (ζ)| . 〈ζ〉−2−j j = 0, 1, 2.

Proof. Since by the above ζ ′ is smooth and non-vanishing, the identity q = (ζ ′)2 shows that

near 0, V = −q− 1
4
d2q

1
4

dζ2
is bounded, so we need only show that V has the claimed behavior as

ζ → ∞. With . = d
dζ , one computes first that

q−
1
4
d2q

1
4

dζ2
= − 3

16
q−2q̇2 +

1

4
q−1q̈(2.41)

so we need only find asymptotics for q in terms of ζ. Recalling definition of ζ as a function of

x, we have that for x ≥ 1

3

2
ζ

3
2 (x) =

∫ x

1

√
1− u−1 du =

∫ x

1
1 +O(u−1) du = x+ c+O(x−1) .

The chain rule applied to the above equality then shows that ζ ′(x) = O(ζ−
1
2 ), where every

derivative of O(ζ−
1
2 ) loses a power of ζ, that is, it exhibits symbol behavior. It follows then that

q = (ζ ′)2 = O(ζ−1) for x large, from which the bound on V follows from (2.41) and one may

obtain the bounds on V ′ and V (2) by differentiating this equality.

�

Proposition 2.11. For any σ > 0 sufficiently small, the following holds: in the range ζ ≥ 0, a

basis of solutions to (2.20) is given by

ψ+ = (Ai(τ) + iBi(τ))[1 + σb+(σ, ζ)]

ψ− = (Ai(τ)− iBi(τ))[1 + σb−(σ, ζ)]
(2.42)

with τ = −σ− 2
3 ζ and b± are smooth functions that satisfy the bounds

|b±(σ, ζ)| . 〈ζ〉−
3
2 , |ḃ±(σ, ζ)| . σ−

1
3

〈
σ−

2
3 ζ
〉− 1

2 〈ζ〉−2 , |b̈±(σ, ζ)| . σ−1 〈ζ〉−2

∂σ [b±(σ, ζ)] . σ−1 〈ζ〉−
3
2 , ∂2σ[b±(σ, ζ)] . σ−3, ∂σ[ḃ±(σ, ζ)] . σ−2 〈ζ〉−1 .

Remark 2.12. This proposition is very similar to Proposition 9 of [7]. Indeed, the bounds on

b± and ḃ± are produced via the same proof, as the only inputs are the asymptotics of V , which

in this regime of ζ are the same as in that paper. However, for our purposes we also require an

additional derivative in ζ and derivatives in the semi-classical parameter σ (~ in [7]). Note that
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in both settings, a representation of the form (2.42) is only possible because Ai and Bi have no

common zeroes, and therefore (2.42) does not fix the zeroes of any solution.

Proof. Let ψ±,0(ζ, σ) = Ai(τ)± iBi(τ). Similar to (2.22), we obtain the equations
(
ψ2
±,0ḃ±

).
= −σ−1V ψ2

±,0(1 + σb±)

whose solutions with b±(∞) = 0 and ḃ±(∞) = 0 is given by

b±(ζ) = −σ−1

∫ ∞

ζ

∫ u

ζ
ψ−2
±,0(v) dv ψ

2
±,0(u)V (u)(1 + σb±(u)) du ,(2.43)

where for now we have suppressed the dependence on σ in the integrand. From [32], we have

the asymptotic expansion

Ai(−z)± iBi(−z) = 1
√
πz

1
4

e∓i( 2
3
z
3
2 −π

4
)(1 +O(z−

3
2 ))(2.44)

where the O(z−
3
2 ) term may be differentiated as a symbol. Thus, for 0 < x0 < x1

(2.45)

∫ x1

x0

(Ai(−z)± Bi(−z))−2 dz

=

∫ x1

x0

z
1
2 e∓i 4

3
z
3
2 a(z) dz = ∓ 1

2i
e∓i 4

3
z
3
2 a(z)

∣∣∣∣
x1

x0

± 1

2i

∫ x1

x0

e∓i 2
3
z
3
2 a′(z) dz

for a(z) = 1 +O(z−
3
2 ). This shows that the above integral is O(1) for all x0 and x1. The main

term with respect to σ in (2.43)

b±,0(ζ) = −σ−1

∫ ∞

ζ

∫ u

ζ
ψ−2
±,0(v) dv ψ

2
±,0(u)V (u) du

satisfies the bound

|b±,0(ζ)| . σ
1
3

∫ ∞

σ− 2
3 ζ

〈u〉−
1
2 |V (−σ 2

3u)| du

where we have changed variables and used that by (2.44)

|(Ai(−z) + iBi(−z))2| . 〈z〉−
1
2

By Proposition 2.10, we see then that

|b±,0(ζ)| . σ
1
3

∫ ∞

σ− 2
3 ζ

〈u〉−
1
2

〈
σ

2
3u
〉−2

du . 〈ζ〉−
3
2 ,

where the last inequality comes from bounding the integrand by σ−
4
3u−

5
2 when σ−

2
3 ζ is large. We

can now extend this bound to b± by a contraction argument, as is explained in Proposition 2.2,

by considering the linear operator

Ta = −σ−1

∫ ∞

ζ

∫ u

ζ
ψ−2
±,0(v) dv ψ

2
±,0(u)V (u)a(u) du

as a map on the weighted space 〈ζ〉−
3
2 L∞

ζ .
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For the ζ-derivative bounds, we first write

ḃ±(ζ) = σ−1ψ−2
±,0(ζ)

∫ ∞

ζ
ψ2
±,0(u)V (u)(1 + σb±(u)) du(2.46)

and use (2.44) to see that ψ2
±,0(ζ) = ei

4
3σ

ζ
3
2 ω(σ−

2
3 ζ) for some ω(u) with |ω(u)| . 〈u〉−

1
2 and

|ω′(u)| . 〈u〉−
3
2 . When ζ > σ−

2
3 , we may exploit the oscillatory phase by integrating by parts

in the above integral via

ψ2
±,0 = (2iζ

1
2/σ)−1ω(σ−

2
3 ζ)

d

dζ
[ei

4
3σ

ζ
3
2 ]

to find that

ḃ±(ζ) =
1

2i
ψ−2
±,0(ζ)[u

− 1
2ω(σ−

2
3u)ei

4
3σ

ζ
3
2 V (u)(1 + σb±(u))]

∣∣∣∣
∞

ζ

(2.47)

− 1

2i
ψ−2
±,0(ζ)

∫ ∞

ζ
ei

4
3σ

ζ
3
2 d

du
[u−

1
2ω(σ−

2
3u)V (u)(1 + σb±(u))] du .(2.48)

Using the bounds on ω we see that the term on the right hand side of the equality in (2.47) is

bounded by

ζ−
1
2

〈
σ−

2
3 ζ
〉− 1

2 〈ζ〉−2 . σ−
1
3

〈
σ−

2
3 ζ
〉− 1

2 〈ζ〉−2 ,

with the last inequality coming from the assumption on ζ. By differentiating the product in the

integrand of (2.48), one checks via the bounds on ω and Proposition 2.10 that every term other

than the term in which the derivative falls on b± is O(σ−
1
3

〈
σ−

2
3 ζ
〉− 1

2 〈ζ〉−2) so that we may

write

ḃ±(ζ) = O(σ−
1
3

〈
σ−

2
3 ζ
〉− 1

2 〈ζ〉−2)− σ

2i
ψ−2
±,0(ζ)

∫ ∞

ζ
ei

4
3σ

ζ
3
2O(u−

1
2

〈
σ−

2
3u
〉− 1

2 〈u〉−2)ḃ±(u) du .

By iterating this equality, we see that the second term is better than the first one, so we see

that |ḃ±(ζ)| . σ−
1
3

〈
σ−

2
3 ζ
〉− 1

2 〈ζ〉−2 . As for the case when σ−
2
3 ζ ≤ 1, we simply write (2.46) as

σ−1ψ−2
±,0(ζ)

∫ σ
2
3

ζ
ψ2
±,0(u)V (u)(1 + σb±(u)) du

+σ−1ψ−2
±,0(ζ)

∫ ∞

σ
2
3

ψ2
±,0(u)V (u)(1 + σb±(u)) du ,

where the first term is clearly bounded by σ−
1
3 and the second one can be estimated similar to

(2.47). Thus, in either case we see that

|ḃ±(ζ)| . σ−
1
3

〈
σ−

2
3 ζ
〉− 1

2 〈ζ〉−2

as claimed.
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For the second ζ-derivative, we differentiate (2.46) to find that

b̈±(ζ) = −σ−1V (ζ)(1 + σb±(ζ))− 2ψ̇±,0(ζ)ψ
−1
±,0(ζ)ḃ±(ζ)

Since |ψ−1
±,0(ζ)| .

〈
σ−

2
3 ζ
〉 1

4
and by (2.44) |ψ̇±,0(ζ)| . σ−

2
3

〈
σ−

2
3 ζ
〉 1

4
, the previously derived

bounds on b± and ḃ± show that

|b̈±(ζ)| . σ−1 〈ζ〉−2

We now demonstrate the bounds on the σ-derivatives of b±. To begin, we rewrite (2.43) as

b±(σ, ζ) = −σ 1
3

∫ ∞

σ− 2
3 ζ

u∫

σ− 2
3 ζ

(Ai±iBi)−2(−v) dv(Ai±iBi)2(−u)V (σ
2
3u)(1 + σb(σ, σ

2
3u)) du

= −σ 1
3

∫ ∞

σ− 2
3 ζ

u∫

σ− 2
3 ζ

(Ai±iBi)−2(−v) dv(Ai±iBi)2(−u)F (u, σ) du

and then differentiate with respect to σ to find that

∂σ[b±(σ, ζ)] =
1

3
σ−1b±(σ, ζ)

− 2

3
σ−

4
3ψ−2

±,0(ζ)ζ

∫ ∞

σ− 2
3 ζ
(Ai±iBi)2(−u)F (u, σ) du

− σ
1
3

∫ ∞

σ− 2
3 ζ

u∫

σ− 2
3 ζ

(Ai±iBi)−2(−v) dv(Ai±iBi)2(−u)∂σ [F (u, σ)] du

=: F±
1 (σ, ζ) + F±

2 (σ, ζ) + F±
3 (σ, ζ).

Our previous bound on b shows that |F±
1 (σ, ζ)| . σ−1 〈ζ〉−

3
2 . Also, from (2.46), we see that

F±
2 (σ, ζ) = −2

3σ
−1ζḃ±(σ, ζ) and is therefore bounded by σ−

4
3

〈
σ−

2
3 ζ
〉− 1

2 〈ζ〉−2 ζ, which is again

bounded by σ−1 〈ζ〉−
3
2 . We compute that

∂σ[F (u, σ)] =
2

3
σ−

1
3V ′(σ

2
3u)u(1 + σb±(σ, σ

2
3u)) + V (σ

2
3u)b±(σ, σ

2
3u)

+
2

3
σ

2
3V (σ

2
3u)ḃ±(σ, σ

2
3u) + σV (σ

2
3u)∂σ [b±(σ, v)]

v=σ
2
3 u

(2.49)

= O

(
σ−

1
3 〈u〉

〈
σ

2
3u
〉−3

)
+O

(〈
σ

2
3u
〉− 7

2

)
+O

(
σ

1
3 〈u〉−

1
2

〈
σ

2
3u
〉−4

)

+ σV (σ
2
3u)∂σ [b±(σ, v)]

v=σ
2
3 u

= O

(
σ−

1
3 〈u〉

〈
σ

2
3u
〉−3

)
+ σV (σ

2
3u)∂σ [b±(σ, v)]

v=σ
2
3 u
.



L1 → L∞ DISPERSIVE ESTIMATES FOR COULOMB WAVES 29

Inserting the last line into F±
3 (σ, ζ) shows that

F±
3 (σ, ζ) =

∞∫

σ− 2
3 ζ

O

(
〈u〉

1
2

〈
σ

2
3u
〉−3

)
du+ T

(
∂σ [b±(σ, v)]

v=σ
2
3 u

)

= O
(
σ−1 〈ζ〉−

3
2

)
+ T

(
∂σ[b±(σ, v)]

v=σ
2
3 u

)

with

T (a) = −σ 4
3

∫ ∞

σ− 2
3 ζ

u∫

σ− 2
3 ζ

(Ai±iBi)−2(−v) dv(Ai±iBi)2(−u)V (σ
2
3u)a(σ

2
3u) du .

Collecting various bounds, we have shown that

∂σ[b±(σ, ζ)] = O
(
σ−1 〈ζ〉−

3
2

)
+ T

(
∂σ[b±(σ, v)]

v=σ
2
3 u

)
.(2.50)

For small enough σ, T is a contraction on the weighted space 〈ζ〉
3
2 L∞

ζ because

|T (〈ζ〉−
3
2 )| . σ

4
3

∫ ∞

σ− 2
3 ζ

〈u〉−
1
2

〈
σ

2
3u
〉− 7

2
du . σ 〈ζ〉−3

so we may conclude that the first term in (2.50) bounds the second, i.e.

|∂σ[b±(σ, ζ)]| . σ−1 〈ζ〉−
3
2 .

The second σ-derivative will require an estimate on the mixed derivative ∂σ[ḃ(σ, ζ)]. This

easily follows from the bounds we have in hand by differentiating in ζ each of F±
i (σ, ζ) for

i = 1, 2, 3. Clearly ∂ζ [F
±
1 (σ, ζ)] contributes σ−

4
3

〈
σ−

2
3 ζ
〉− 1

2 〈ζ〉−2 while it is easy to see that

∂ζ [F
±
2 (σ, ζ)] = −2ψ−1

±,0(ζ)ψ̇±,0(ζ)F
±
2 (σ, ζ)) + ζ−1F±

2 (σ, ζ) +
2

3
σ−2ζV (ζ)(1 + σb±(σ, ζ))

= O
(
σ−2 〈ζ〉−1

)
.

Finally, the bound we have obtained on ∂σ[b(σ, ζ)] may be used in (2.49) to show that

∂ζ [F
±
3 (σ, ζ)] = σ−

1
3ψ−2

±,0(ζ)

∞∫

σ− 2
3 ζ

(Ai±iBi)2(−u)∂σ[F (u, σ)] du

. σ−
2
3

〈
σ−

2
3 ζ
〉 1

2

∞∫

σ− 2
3 ζ

〈u〉
1
2

〈
σ

2
3u
〉−3

du . σ−2 〈ζ〉−1

for a total bound of

∂σ[ḃ(σ, ζ)] . σ−2 〈ζ〉−1 .
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For the second σ-derivative, we proceed similarly and differentiate each of F±
i (σ, ζ). First,

∂σ[F
±
1 (σ, ζ)] = −σ−1(F±

1 (σ, ζ)) +
1

3
σ−1∂σ[b±(σ, ζ)] . σ−2 〈ζ〉−

3
2

whereas

∂σ[F
±
2 (σ, ζ)] = −4

3
σ−1F±

2 (σ, ζ)− 4

3
σ−

5
3 ζψ−1

±,0(ζ)(Ai±iBi)′(−σ−
2
3 ζ)F±

2 (σ, ζ)

− 4

9
σ−3ζ2V (ζ)(1 + σb±(σ, ζ))−

2

3
σ−

4
3ψ−2

±,0(ζ)ζ

∞∫

σ− 2
3 ζ

(Ai±Bi)2(−u)∂σ{F (u, σ)} du .

The first term is O
(
σ−2 〈ζ〉−

3
2

)
and second term is O

(
σ−3

)
because we have already shown that

|F±
2 (σ, ζ)| . σ−

4
3

〈
σ−

2
3 ζ
〉− 1

2 〈ζ〉−2 ζ. The third term is also O(σ−3) and the fourth is bounded

by σ−
5
3ψ−2

±,0(ζ)ζF
±
3 (σ, ζ) which is again O(σ−3) by the previously obtained bound on F±

3 (σ, ζ).

We compute further that

∂σ[F
±
3 (σ, ζ)] =

1

3
σ−1F±

3 (σ, ζ)− 2

3
σ−

4
3ψ−2

±,0(ζ)

∞∫

σ− 2
3 ζ

(Ai±iBi)2(−u)∂σ [F (u, σ)] du

− σ
1
3

∫ ∞

σ− 2
3 ζ

u∫

σ− 2
3 ζ

(Ai±iBi)−2(−v) dv(Ai±iBi)2(−u)∂2σ [F (u, σ)] du .

Arguing similarly, one may easily see that the first two terms are O(σ−3). For the last term, we

need to estimate ∂2σ [F (u, σ)]. Series of elementary operations show that

∂2σ[F (u, σ)] = O

(
σ−

4
3

〈
σ

2
3u
〉−2

〈u〉
)
+ σV (σ

2
3u)∂2σ[b±(σ, v)]v=σ

2
3 u

and therefore

∂σ[F
±
3 (σ, ζ)] = O(σ−3)

− σ
1
3

∫ ∞

σ− 2
3 ζ

u∫

σ− 2
3

(Ai±iBi)−2(−v) dv(Ai±iBi)2(−u)O
(
σ−

4
3

〈
σ

2
3

〉−2
〈u〉
)
du

+ T
(
∂2σ[b±(σ, v)]v=σ

2
3 u

)
.

The middle term is easily seen to be O
(
σ−2 〈ζ〉−

1
2

)
so that all of our estimates on the σ-

derivatives of F±
i (σ, ζ) show that ∂2σ[b±(σ, ζ)] satisfies a fixed point equation of the form

∂2σ[b±(σ, ζ)] = O(σ−3) + T
(
∂2σ[b±(σ, v)]v=σ

2
3 u

)
.
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To conclude, we need only show that T is a contraction on L∞ for σ sufficiently small, but this

follows from the computation

|T (1)| . σ
4
3

∫ ∞

σ− 2
3

〈u〉−
1
2

〈
σ

2
3u
〉−2

du . σ 〈ζ〉−
3
2

so that as before it follows that ∂2σ[b±(σ, ζ)] = O(σ−3), which completes the proof. �

We would now like to use the oscillatory basis to provide an approximation of e(σ, r) that is

suitable for use inside the oscillatory integral defining Kt. This requires detailed bounds on the

function

ζr(σ) := σ−1 2

3
ζ

3
2 (σ2r) .

Proposition 2.13. Fix constants k > 2, 0 < c < 1, and s > kc−2. Then for any r ≥ s the

function ζr(σ) = σ−1 2
3ζ

3
2 (σ2r) satisfies the inequalities

ζ ′r(σ) ∼ r(2.51)

|ζ ′′r (σ)| .
r

σ
(2.52)

ζ ′′r (σ) < 0(2.53)

uniformly for σ in the region [ks−
1
2 , c]. Furthermore, for if s < r then

r − s . ζ ′r(σ)− ζ ′s(σ) . r(2.54)

|ζ ′′r (σ)− ζ ′′s (σ)| .
r − s

σ
(2.55)

ζ ′′r (σ)− ζ ′′s (σ) < 0(2.56)

Here, all derivatives are with respect to σ and . and ∼ indicate bounds with respect to constants

that depends only on k and c (i.e. not on r and s).

Proof. Recall that for z ≥ 1

2

3
ζ

3
2 (z) =

∫ z

1

√
1− u−1 du

or explicitly

2

3
ζ

3
2 (z) =

√
z(z − 1)− log(

√
z +

√
z − 1)(2.57)

One computes that

ζ ′r(σ) = 2r
√

1− (σ2r)−1 − 2

3
ζ

3
2 (σ2r)σ−2

= r
√

1− (σ2r)−1 + σ−2 log(σr
1
2 +

√
σ2r − 1) .
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Since σ & s−
1
2 on the regime in question, the log term is positive so the above is clearly greater

than r
√
1− k−2. For the upper bound, one writes

log(σr
1
2 +

√
σ2r − 1) ≤ log(2σr

1
2 )

and then checks that as a function of σ, σ−2 log(σa) has a global maximum of a2

2e .

To bound the second derivative, we first calculate

ζ ′′r (σ) = 2σ−3(1− (σ2r)−1)−
1
2 − 2rσ−1

√
1− (σ2r)−1 + 2σ−3 2

3
ζ

3
2 (σ2r)

= 2σ−3(1− (σ2r)−1)−
1
2 − 2σ−3 log(σr

1
2 +

√
σ2r − 1)

and then observe that because σ−2 . r

|ζ ′′r |(σ) . σ−1(r + σ−2 log(2σr
1
2 )) .

r

σ
.

The negativity of ζ ′′r follows from the above expression and the fact that (1 − (σ2r)−1)−
1
2 is a

decreasing function of σ2r while log(σr
1
2 +

√
σ2r − 1) is an increasing function of σ2r and one

may verify that their difference is negative at, say, σ2r = 2.

For the estimate on the difference ζ ′r − ζ ′s, we observe first that ζr(σ) is an increasing function

of r for any fixed σ and dζ′r
dr is uniformly bounded below and above for all allowed σ and s.

Hence, the mean value theorem implies (2.54) and (2.55). To see (2.56), notice that ζ ′′r is a

negative decreasing function of r for any fixed σ. �

Corollary 2.14. Let σ < c for c > 0 sufficiently small. Then for all x ≥ 1

e(σ, r(x)) = c−(σ)q
− 1

4ψ+(τ(x)) + c+(σ)q
− 1

4ψ−(τ(x))(2.58)

c−(σ) = σ−
1
6 (1 +O(σ)), c+(σ) = σ−

1
6 (1 +O(σ)) .

Furthermore, for some constant C > 0 large enough, we may write

e(σ, r) = eiζr(σ)a+(σ, r) + e−iζr(σ)a−(σ, r)

where the functions a± are smooth and satisfy the bounds

|a±(σ, r)| . 1

|∂σ [a±(σ, r)]| . σ−1 . s
1
2

|∂2σ [a±(σ, r)]| . s

uniformly for all 0 < s ≤ r and σ ∈ [Cs−
1
2 , c].

Proof. First, we connect the expression derived for e(σ, r) in Corollary 2.9 to the basis con-

structed in Proposition 2.11 at ζ = 0(that is, x = 1). Based on Corollary 2.9, by regarding r as

a function x(ζ) we have

e(σ, r)|ζ=0 = 2σ−
1
6 Ai(0)(1 +O(σ))
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∂ζ [e(σ, r))]ζ=0 = −2σ−
5
6 Ai′(0)(1 +O(σ))

since we may absorb the Bi term into the O(σ) because the coefficient B(σ) = O(σ∞) and

q(0) = 1. Now, all of the Wronskians are evaluated at ζ = 0. It follows that

W [e(σ, r(x(·))), ψ±(σ, ·)] = ∓2iσ−
5
6W [Ai,Bi](1 +O(σ)) = ∓ i

2π
σ−

5
6 (1 +O(σ))

and because

W [ψ+(σ, ·), ψ−σ, ·)] = −σ− 2
3W [Ai+iBi,Ai−iBi](1 +O(σ)) = 2iσ−

2
3W [Ai,Bi](1 +O(σ))

=
2i

π
σ−

2
3 (1 +O(σ))

from which we may determine c±(σ) immediately. Now, using (2.44), one may easily see that

e(σ, r) = (−Q)−
1
4 (x)e−i(ζr(σ)−

π
4
)(1 +O

(
(ζr(σ))

−1
)
(1 + σb+(σ))

+ (−Q)−
1
4 (x)ei(ζr(σ)−

π
4
)(1 +O

(
(ζr(σ))

−1
)
(1 + σb−(σ))

= e−iζr(σ)a−(σ, r) + eiζr(σ)a+(σ, r)

so we are only left to show the bounds on a± under the assumption that r ≥ s > Cσ−2. The

bound |a±| . 1 is immediate from the fact that for σ2r > C, ζr(σ) is bounded below. For the

derivatives, by making liberal use of the fact that σ2r > C, one computes that

|(−Q(σ2r))−
1
4 | . 1

|∂σ[(−Q(σ2r))−
1
4 ]| = 1

2
(1− (σ2r)−1)−

5
4σ−3r . σ−1 . s

1
2

|∂2σ[(−Q(σ2r))−
1
4 ]| = 5

4
(1− (σ2r)−1)−

9
4σ−6r−2 +

3

2
(1− (σ2r)−1)−

5
4σ−4r−1 . σ−2 . s .

Taylor expanding (2.57) we also have ζr(σ) ∼ σr when σ2r > 2. Therefore, by (2.51) we obtain

|∂σ[(ζr(σ))−1]| = |ζ ′r(σ)(ζr(σ))−2| . 1.

Similarly

|∂2σ [(ζr(σ))−1]| . |ζ ′′r (σ)(ζr(σ))−2|+ |(ζ ′r(σ))2(ζr(σ))−3| . σ−1 . s
1
2

again from Proposition 2.13. Now, one uses Proposition 2.11 and Proposition 2.13 to see that

|b±(σ, ζ(σ2r))| . 1

|∂σ[b±(σ, ζ(σ2r))]| . |σrζ ′(σ2r)ḃ±(σ, ζ(σ2r))|+ ∂σ [b±(σ, ζ)]|ζ=ζ(σ2r)

. (σr)(σ2r)−
1
3 (ζ(σ2r))−

5
2 + σ−1 . σ−1 . s

1
2 ,

where ˙ represents the derivative with respect to the second variable and thus

|1 + σb±(σ, ζ(σ
2r))| . 1

|∂σ[σb±(σ, ζ(σ2r))]| . |b±(σ, ζ(σ2)|+ |σ2rζ ′(σ2r)ḃ±(σ, ζ(σ2r))|+ σ∂σ[b±(σ, ζ)]|ζ=ζ(σ2r)
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. (ζ(σ2r))−
3
2 + (σ2r)(σ2r)−

1
3 (ζ(σ2r))−

5
2 + (ζ(σ2r))−

3
2 . 1 .

As usual suppressing the variable σ2r in ζ, we obtain

|∂2σ[σb±(σ, ζ)]| . |∂σ[b±(σ, ζ(σ2r))]|+ σ|∂2σ [b±(σ, ζ(σ2r))]| .

The first term is less than σ−1 by our previous computation and for the second we write

∂2σ[b±(σ, ζ(σ
2r)))] = ∂2σ[b±(σ, ζ(x))]x=σ2r + (2rζ ′(σ2r) + 4(σr)2ζ ′′(σ2r))ḃ±(σ, ζ)

+2σrζ ′(σ2r)∂σ[ḃ±(σ, ζ(x))]x=σ2r + (2σrζ ′(σ2r))2b̈±(σ, ζ)

and using various bounds from Proposition 2.11 shows that |∂2σ [b±(σ, ζ(x)]|x=σ2r . σ−3.

This gives a total bound of

|∂2σ[b±(σ, ζ(σ2r)]| . σ−2 . s .

Summarizing all of these derivative computations, we have shown that

|(−Q(σ2r))−
1
4 | . 1, |∂σ[(−Q(σ2r))−

1
4 ]| . σ−1 . s

1
2 , |∂2σ[(−Q(σ2r))−

1
4 ]| . s

O((ζr(σ))
−1) . 1, |∂σ[(ζr(σ))−1]| . 1, |∂2σ[(ζr(σ))−1]| . σ−1 . s

1
2

|1 + σb±(σ, ζ(σ
2r))| . 1, | d

dσ
[σb±(σ, ζ(σ

2r))]| . 1, | d
2

dσ2
[σb±(σ, ζ(σ

2r))]| . s

and then by the Leibniz rule

|∂σa±(σ, r)| . σ−1 . s
1
2 , |∂2σa±(σ, r)| . s

as claimed. �

Remark 2.15. We remark that our connection in Corollary 2.14 is consistent with the as-

ymptotic behavior of M i
2σ

, 1
2
(2iσr). Using [8, (13.14.32) and (13.14.21)] one can calculate the

following asymptotic behavior as σr → ∞

M i
2σ

, 1
2
(2iσr) ∼ ie

π
4σ

|Γ(1 + i
2σ )|

sin
(
σr − 1

2σ
log(2σr) + θ(σ)

)
,(2.59)

where θ(σ) := arg(Γ(1 + i/(2σ)). Therefore, by (3.1) we have e(σ, r) ∼ sin
(
σr − 1

2σ log(2σr) +

θ(σ)
)
as σr → ∞. Here, we used the fact that |Γ(is)| =

√
π

s sinh(πs) , see (5.4.3) in [8].

On the other hand, by Stirling’s formula [8, (5.11.1)], we have as σ → 0,

θ(σ) =
− ln(2σ)

2σ
− 1

2σ
+
π

4
− σ

3
+O2(σ

3)

and therefore,

e±i(σr− 1
2σ

log(2σr)+θ(σ)) = e±i(σr− 1
2σ

−
ln(4σ2r)

2σ
+π

4
)(1 +O(σ)).



L1 → L∞ DISPERSIVE ESTIMATES FOR COULOMB WAVES 35

By [8, (10.4.60), (10.4.64)], when x > 0 is big

Ai(−x) = 1√
πx1/4

sin

(
2

3
x3/2 +

π

4

)
+O

(
1

x3/2

)
,

Bi(−x) = 1√
πx1/4

cos

(
2

3
x3/2 +

π

4

)
+O

(
1

x3/2

)
.

Then the consistency is now clear using the following expansions

q−
1
4ψ+(τ(σ

2r)) =
σ

1
6

π
1
2

e−i(σr− 1
2σ

−
ln(4σ2r)

2σ
−π

4
)(1 +O((σr)−1))

q−
1
4ψ−(τ(σ

2r)) =
σ

1
6

π
1
2

ei(σr−
1
2σ

−
ln(4σ2r)

2σ
−π

4
)(1 +O((σr)−1))

as (σr) → ∞ in Corollary 2.14.

We finish this section with the following lemma and its corollary.

Lemma 2.16. Let c be sufficiently small such that for all σ < c (2.39) and (2.58) hold. Moreover

let 3
4 ≤ n < 1, m <∞ and define χm

n := χ̃nχm. Then one has

|χc(σ)χ
m
n (σ2r)e(σ, r)| . χc(σ)χ

m
n (σ2r)σ2r

|χc(σ)χ
m
n (σ2r)∂σ{e(σ, r)}| . χc(σ)χ

m
n r

|χc(σ)χ
m
n (σ2r)∂2σ{e(σ, r)}| . χc(σ)χ

m
n (σ2r)σ−2r .

Proof. Recall by (2.39), and (2.58), we have

e(σ, r) = c+(σ)
Ai(−σ− 2

3 ζ(σ2r)

q
1
4 (σ2r)

(1 + σa(σ, ζ(σ2r)) + c−(σ)
Bi(−σ− 2

3 ζ(σ2r)

q
1
4 (σ2r)

(1 + σb(σ, ζ(σ2r))

where a, b hold the bounds in Proposition 2.7 for σ2r ≤ 1, and the bounds in Proposition 2.11

for σ2r ≥ 1.

We show the statement first for the leading terms. We note that by the definition of χc, given

n ≥ 3
4 , the cut-off χ̃nχm(x) is supported for x ≥ 1

2 . Therefore, by expansions (2.24), (2.44) and

the fact that −3
2(ζ(

1
2))

2
3 = π

4 − 1
2 we have

|χc(σ)χ
m
n (x)Bi(−σ− 2

3 ζ(x))| . e
1
σ
(π
4
− 1

2
)σ

1
6(2.60)

|χc(σ)χ
m
n (x)Ḃi(−σ− 2

3 ζ(x))| . e
1
σ
(π
4
− 1

2
)σ−

5
6 ,

|χc(σ)χ
m
n (x)B̈i(−σ− 2

3 ζ(x))| . e
1
σ
(π
4
− 1

2
)σ−

11
6 ,

As usual we use ˙ for ζ-derivatives. Similarly

|χc(σ)χ
m
n (x)Ai(−σ− 2

3 ζ(x))| . σ
1
6 .(2.61)

|χc(σ)χ
m
n (x)Ȧi(−σ− 2

3 ζ(x))| . σ−
5
6

|χc(σ)χ
m
n (x)Äi(−σ− 2

3 ζ(x))| . σ−
11
6 .
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Furthermore, by definition of q, we have for x ≥ 1
2

∂jx{ζ(x)} = 〈x〉2/3−j , ∂jx{q−
1
4 (x)} = 〈x〉1/6−j .(2.62)

As a result, using (2.60),(2.62), and c−(σ) from Corollary 2.14 we obtain

∣∣∣χc(σ)χ
m
n (σ2r)c−(σ)

Bi(−σ− 2
3 ζ(σ2r)

q
1
4 (σ2r)

∣∣∣ . χm
n (σ2r)e−

1
σ
(π
4
− 1

2
)〈σ2r〉 1

6 . e−
1
σ
(π
4
− 1

2
)σ2r .(2.63)

In the last inequality we used the fact that n ≤ σ2r.

As usual to shorten the notation, for the rest of the proof we avoid using the variable σ2r in

ζ. We continue with estimating the σ derivative of the leading term. We compute

(2.64) |χcχ
m
n ∂σ{c−(σ)q−

1
4 (ζ)Bi(−σ− 2

3 ζ)}| . χcχ
m
n [c′−(σ)(q(σ

2r))−
1
4 Bi(−σ− 2

3 ζ)

+ c−(σ)
∂(q(σ2r))−

1
4

∂σ
Bi(−σ− 2

3 ζ) + c−(σ)(q(σ
2r))−

1
4 Ḃi(−σ− 2

3 ζ)
dζ

dσ
]

Using (2.60),(2.62) and
∣∣dζ(σ2r)

dσ

∣∣ . σr, we estimate |(2.64)| . e−
1
σ
(π
4
− 1

2
)r

Similarly, using (2.60),(2.62) and
∣∣dζ(σ2r)

dσ

∣∣ . σr, one can compute

|χcχ
m
n ∂

2
σ{c−(σ)q−

1
4 (ζ)Bi(−σ 2

3 ζ)}| . e−
1
σ
(π
4
− 1

2
)σ−2r.(2.65)

As expected from the computation of (2.64), the restricting term σ−2r in (2.65) arises when

both of the two derivatives fall on Bi(−σ− 2
3 ζ). This situation leads us to the bound σ−2(σr)2.

However, due to the constraint r ≤ mσ−2, we can simplify this estimate to σ−2r. With a similar

observation and using (2.61), (2.62) we have

|χcχ
m
n c+(σ)q

− 1
4 (ζ)Ai(−σ 3

2 ζ)| . σ2r(2.66)

|χcχ
m
n ∂

2
σ{c+(σ)q−

1
4 (ζ)Ai(−σ 3

2 ζ)}| . σ−jr. j = 1, 2 .

Hence, we obtain the bounds for the leading terms.

We next estimate the error terms. We first start with σ2r ≤ 1. For that we use Proposition 2.7.

We will only estimate a. The bounds on b can be estimated similarly. We first note that |a1| . 1,

and

|χcχ
m
n ∂σ{a(σ, ζ(σ2r)}| . χcχ

m
n [|∂σ{a(σ, ζ(x)}|x=σ2r|+ |ȧ(σ, ζ)dζ

dσ
|] . σ−

4
3 .(2.67)

Furthermore,

|χcχ
m
n ∂

2
σ{a1(σ, ζ(σ2r)}| . χcχ

m
n [|∂2σ{a1(σ, ζ(x)}|x=σ2r|+ |∂σ{ȧ1(σ, ζ)}

dζ

dσ
|(2.68)

+|ä1(σ, ζ)
( dζ
dσ

)2|+ |ȧ1(σ, ζ)
d2ζ

dσ2
|] . χm

n σ
− 4

3 r . σ−
10
3 .

We next, comment on the error term when σ2r ≥ 1. For that we use Proposition 2.11 and

will estimate σb±. In fact, using σb± in (2.67) and (2.68) instead of a1, we see the same bounds

holds for the sigma derivatives of σb± in the support of χcχ
m
n . Combining these bounds with
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(2.63), (2.64), (2.65), (2.66) we obtain the statement. Here for the discontinuity at σ2r = 1, we

note that originally we converge to M i
2σ

, 1
2
(2iσr) and this function is analytic in the vicinity of

turning point. �

The following corollary is due to Lemma 2.4 and Lemma 2.16.

Corollary 2.17. Fix c > 0 sufficiently small and k <∞. Then for any β ≥ 0 we have

|χc(σ)χk(σ
2r)e(σ, r)| . χc(σ)χk(σ

2r)rσ2 ,

|χc(σ)χk(σ
2r)∂σ{e(σ, r)}| . χc(σ)r[σ

βχ 1
2
(σ2r) + χk

1
2
(σ2r)] ,

|χc(σ)χk(σ
2r)∂2σ{e(σ, r)}| . χc(σ)r[σ

βχ 1
2
(σ2r) + σ−2χk

1
2

(σ2r)] .

3. Eigenfunction approximation: Large Energies

In this section, we will consider the energies when σ ≥ c > 0 where c ≪ 1 . Recall (3.1), we

have

e(σ, r) = −iσ− 1
2 [e

π
σ − 1]−

1
2M i

2σ
, 1
2
(2iσr)(3.1)

= −iσ− 1
2 [e

π
σ − 1]−

1
2 e−iσr(2iσr)M

(
1− i/(2σ), 2, 2iσr

)
.

Here M(a, b, z) is the Kummer’s function of the first kind. In this section we prove Proposi-

tion 3.1.

Proposition 3.1. Let k <∞, then the following expansions are valid for e(σ, r)

χ̃c(σ)χk(σr)e(σ, r) = χ̃c(σ)χk(σr)σ
1
2 [e

π
σ − 1]−

1
2 r(1 +O2(σr))(3.2)

χ̃c(σ)χ̃k(σr)e(σ, r) = − i√
π
χ̃c(σ)χ̃k(σr)[e

i(σr−
ln(2σr)

σ
−θ(σ)) + e−i(σr−

ln(2σr)
σ

+θ(σ))] + E(σ, r)(3.3)

where θ(σ) = arg(Γ(1 + i/(2σ))) and

|E(σ, r)| . 1, |∂σ{E(σ, r))}| . r |∂2σ{E ′′(σ, r))}| . σ−1r .(3.4)

Before we start the proof, we state a couple of expressions for M(a, b, z). These formulas can

be found in [8, Chapter 13]. We will use (3.5) to prove (3.2) and (3.6) to prove the (3.3). One

has

M(a, b, z) = 1 +

∞∑

s=1

a(a+ 1)...(a + (s− 1))

b(b+ 1)...(b + (s− 1))s!
zs(3.5)

for any nonpositive integer b and

M(a, b, z) =
1

Γ(a)Γ(b− a)

∫ 1

0
ezssa−1(1− s)b−a−1dt.(3.6)

for ℜ(b) > ℜ(a) > 0.
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We start with the following lemma which analyzes the integral in (3.6) for a = 1− i
2σ , b = 2

and z = 2iσr.

Lemma 3.2. We have the following expansion

(3.7) χ̃c(σ)χ̃c(σr)

1∫

0

e2iσrss−
i
2σ (1− s)

i
2σ ds

=
χ̃c(σ)χ̃c(σr)

(2iσr)

[
e2iσr(2σri)−

i
2σΓ
(
1 +

i

2σ

)
− (−2iσr)

i
2σΓ
(
1− i

2σ

)]

+ e
π
2σ

[
b+(σ, r) + e2iσrb−(σ, r)

]

where |b±(σ, r)}| . |σr|−2 , |∂jσ{b±(σ, r)}| . σ−j|σr|−1 for j = 0, 1, 2.

Proof. Using the contour below, we obtain (3.8).
y

x

cε c̃ε

l1 l2

lRR

10

(3.8)

∫ 1−ε

ε
e2iσrss−

i
2σ (1− s)

i
2σ ds =

∫

cε

e2iσrss−
i
2σ (1− s)

i
2σ ds

+

∫

l1

e2iσrss−
i
2σ (1− s)

i
2σ ds+

∫

lR

e2iσrss−
i
2σ (1− s)

i
2σ ds

+

∫

l2

e2iσrss−
i
2σ (1− s)

i
2σ ds+

∫

c̃ε

e2iσrss−
i
2σ (1− s)

i
2σ ds .

Note that if σ ≥ c > 0, then

∣∣∣
∫

cε

e2iσrss−
i
2σ (1− s)

i
2σ ds

∣∣∣ = ε
∣∣∣

π∫

π/2

e2iσrεe
is

(εeis)−
i
2σ (1− εeis)

i
2σ eis ds

∣∣∣ ≤ εe
π
2c

∣∣∣
∫

c̃ε

e2iσrss−
i
2σ (1− s)

i
2σ ds

∣∣∣ = ε
∣∣∣

π∫

π/2

e2iσr(1+εeis)(1 + εeis)−
i
2σ (−εeis) i

2σ eis ds
∣∣∣ ≤ εe

π
2c .

Hence, the first and last term on the right side of the equality in (3.8) goes to zero as ε → 0.

Moreover, as σr ≥ c

∣∣∣
∫

lR

e2iσrss−
i
2σ (1− s)

i
2σ ds

∣∣∣ =
∣∣∣

1∫

0

e2iσr(iR+s)(iR+ s)−
i
2σ (1− (iR+ s))

i
2σ ds

∣∣∣ ≤ e−2Rce
π
2c .
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Therefore, the third term on the right side of the equality in (3.8) goes to zero as R → ∞.

We next estimate the second and fourth terms on the right side of the equality in (3.8).

Parametrizing the paths and letting ε→ 0, R → ∞ we have

χ̃c(σ)χ̃c(σr)

1∫

0

e2iσrss−
i
2σ (1− s)

i
2σ ds = χ̃c(σ)χ̃c(σr)(A1 +A2)(3.9)

where

A1(σ, r) :=

∞∫

0

e2iσr(is)(is)−
i
2σ (1− is)

i
2σ i ds

A2(σ, r) :=

∞∫

0

e2iσr(1+is)(1 + is)−
i
2σ (−is) i

2σ (−i) ds .

We can write

A1(σ, r) =

∞∫

0

e−2σrs(is)−
i
2σ i ds+

∞∫

0

e−2σrs(is)−
i
2σ [(1− is)

i
2σ − 1]i ds(3.10)

= (−2iσr)−1+ i
2σΓ(1− i/(2σ)) + e

π
2σ

∞∫

0

e−
π
2σ e−2σrs(is)−

i
2σ [(1− is)

i
2σ − 1]i ds

and similarly

A2(σ, r) = e2iσr
∞∫

0

e−2σrs(1 + is)−
i
2σ (−is) i

2σ (−i) ds

= e2iσr
∞∫

0

e−2σrs(−is) i
2σ (−i)ds − e2iσr

∞∫

0

e−2σrs[(1 + is)−
i
2σ − 1](−is) i

2σ i ds

= e2iσr(2σri)−1− i
2σΓ(1 + i/(2σ)) − e2iσr

∞∫

0

e−2σrs[(1 + is)−
i
2σ − 1](−is) i

2σ i ds .

If we let

b+(σ, r) :=

∞∫

0

e−
π
2σ e−2σrs(is)−

i
2σ [(1 − is)

i
2σ − 1]i ds

b−(σ, r) := −
∞∫

0

e−
π
2σ e−2σrs[(1 + is−

i
2σ − 1](−is) i

2σ i ds

then plugging A1, A2 in (3.9) and comparing to (3.7), one can see that it is enough to show

that bk satisfies the bounds |∂jσ{b±(σ, r)}| . σ−j |σr|−1, |b±(σ, r)| . |σr|−2. Below, we prove the

bounds for b+, the bounds for b− follow similarly.
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Observe that |(is)− i
2σ [(1−is) i

2σ −1]| . 1. Furthermore, for any s < 1, (1−is) i
2σ = 1+O(s/σ)

and therefore

|(is)− i
2σ [(1− is)

i
2σ − 1]| . σ−1s .

This allows us to deduce, through interpolation, the following inequality for any σ ≥ c:

|b+(σ, r)| . σ−α

1/|σr|∫

0

sα ds+

∞∫

1/|σr|

1

(σrs)5/2
ds . |σr|−(1+α) .(3.11)

We next estimate ∂σb1(σ, r). Note that since b1 is convergent we can differentiate under the

integral sign. Hence, we first estimate the σ derivative of the integrand in b1(σ, r). One has

∂σ{e−
π
2σ e−2σrs(is)−

i
2σ [(1− is)

i
2σ − 1]}(3.12)

= (is)−
i
2σ ∂σ{e−

π
2σ e−2σrs[(1− is)

i
2σ − 1]}

+ e−
π
2σ e−2σrs[(1− is)

i
2σ − 1]∂σ{(is)−

i
2σ } .

Using the fact that e−2σrs . 〈σrs〉−ℓ for any ℓ > 0, the first term in (3.12) can be estimated as

(3.13) |(is)− i
2σ ∂σ{e−

π
2σ e−2σrs[(1− is)

i
2σ − 1]}| . e−2σrs[(rs) + σ−2〈s〉0+]

. 〈σrs〉−5/2[(rs) + σ−2〈s〉0+] .

For the second term, we first have

χ̃c(σ)|e−
π
4σ [(1− is)

i
2σ − 1]| . s

σ
χ(s < 1) + χ(s ≥ 1).(3.14)

Therefore, the second term in (3.12) can be estimated for σ ≥ c as

|e− π
2σ e−2σrs[(1 − is)

i
2σ − 1]∂σ{(is)−

i
2σ }| . 〈σrs〉−3/2[

s

σ
χ(s < 1) + χ(s ≥ 1)]

log |s|
σ2

.(3.15)

Using (3.13), (3.15) and (3.12) we obtain

|χ̃c(σ)χ̃c(σr)∂σb+(σ, r)| . χ̃c(σ)χ̃c(σr)

1/|σr|∫

0

[σ−3 max{s1−, s0+}+ σ−1]ds(3.16)

+χ̃c(σ)χ̃c(σr)

∞∫

|σr|−1

[(rs)(σrs)−5/2 + σ−2s0+(σrs)−3/2]ds . σ−1|σr|−1 .

We next estimate the second derivative of the integrand in b1(σ, r). One has,

∂2σ{e−
π
2σ e−2σrs(is)−

i
2σ [(1− is)

i
2σ − 1]} = (is)−

i
2σ ∂2σ{e−

π
2σ e−2σrs[(1− is)

i
2σ − 1]}(3.17)

+ e−
π
2σ e−2σrs[(1− is)

i
2σ − 1]∂2σ{(is)−

i
2σ }

+ 2∂σ{e−
π
4σ e−2σrs[(1− is)

i
2σ − 1]}∂σ{e−

π
4σ (is)−

i
2σ } .
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We have the following estimate for the first term in (3.17).

(3.18) χ̃c(σ)|(is)−
i
2σ ∂2σ{e−

π
2σ e−2σrs[(1 − is)

i
2σ − 1]}|

. 〈σrs〉−7/2[(rs)2 + (rs)〈s〉0+σ−2 + σ−3〈s〉0+] .

Moreover, using (3.14) we have

(3.19) χ̃c(σ)|e−
π
2σ e−2σrs[(1− is)

i
2σ − 1|∂2σ{(is)−

i
2σ }|

. 〈σrs〉−3/2[
s

σ
χ(s < 1) + χ(s ≥ 1)]σ−3 max{s0+, s0−} .

and

(3.20) χ̃c(σ)∂σ{e−
π
4σ e−2σrs[(1 − is)

i
2σ − 1]}

. 〈σrs〉−3/2[(rs) + σ−2sχ(s < 1) + σ−2s0+χ(s ≥ 1)] .

Using (3.20) we also estimate the last term in (3.17) as

(3.21) χ̃c(σ)|∂σ{e−
π
4σ e−2σrs[(1− is)

i
2σ − 1]}∂σ{e−

π
4σ (is)−

i
2σ }|

. 〈σrs〉−3/2[(rs) + σ−2sχ(s < 1) + σ−2s0+χ(s ≥ 1)]σ−2 log |s| .

Using (3.18),(3.20), (3.21) and (3.17) in a similar way to (3.16),we obtain

|χ̃c(σ)χ̃c(σr)∂
2
σb+(σ, r)| . σ−2|σr|−1.(3.22)

The estimates (3.11),(3.16) and (3.22) establishes the statement for b1(σ, r). �

Proof of Proposition 3.1. We first prove (3.2). Note that by (3.5) we have

M
(
1− i/(2σ), 2, 2iσr

)
= 1 + iσr +

r

2
+ E(σ, r)(3.23)

where

E(σ, r) = (1− i

2σ
)(2 − i

2σ
)(σr)2

∞∑

s=0

cs(σ)(σr)
s .

Since lim sups→∞

∣∣ cs+1(σ)
cs(σ)

∣∣ = 0, the sum is convergent in the support of χk(σr). Moreover, in

the support of χ̃c(σ) one has r . (σr) and therefore,

|∂jσ{E(σ, r)}| . σ2−jr2.

Using (3.23), the expansion e−iσr = 1− iσr +O2((σr)
2) for σr < 1 and

e
π
4σ

|Γ(1 + i
2σ )|

= (π)−
1
2σ

1
2 [e

π
σ − 1]

1
2(3.24)

in (3.1), we obtain the statement.
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For the proof of (3.3) we use Lemma 3.2. Note that by (3.6) we have

M(1− i/(2σ), 2, 2iσr) =
1

|Γ(1 + i/(2σ)|2
∫ 1

0
e2iσrss−

i
2σ (1− s)

i
2σ ds .(3.25)

Moreover,

Γ(1± i/(2σ)) = |Γ(1 + i/(2σ))|e±iθ(σ)

where θ(σ) = arg(Γ(1 + i/(2σ)) and

(∓2iσr)±
i
2σ = e

π
4σ e±

log(2σr

σ .

Therefore, using Lemma 3.2, (3.25) and (3.24) in (3.1), we have in the support of χ̃c(σ)χ̃c(σr)

e(σ, σ2r) = −i(π)− 1
2 [e−i(σr−σ−1 ln(2σr)+θ(σ) + ei(σr−σ−1 ln(2σr)+θ(σ)]

− i(π)−
1
2 (2iσr)

e
π
4σ

|Γ(1 + i
2σ )|

[e−iσrb+(σ, r) + eiσrb−(σ, r)] .

Letting E(σ, r) := π−1(2σr)σ
1
2 [e

π
σ − 1]

1
2 [e−iσrb+(σ, r) + eiσrb−(σ, r)], we see that E(σ, r) holds

the required bounds. We skip the validation of the bounds as it is basic differentiation. �

4. Proof of Theorem 1.1

In this section, we are focusing on estimating the kernel given by the equation:

Kt(r, s) =
1

2rs

∞∫

0

eitq
2σ2
e(qσ, r)e(qσ, s) dσ

as supr,s |Kt(r, s)| . t−
3
2 for r, s ≥ 0 and t ≥ 1. Importantly, this bound is sufficient to establish

the validity of Theorem 1.1 as one has

‖eitH0,qg‖L∞(R3) =
∥∥∥

∞∫

0

Kt(r, s)s
2g(s)ds

∥∥∥
L∞
r (R3)

. sup
r,s

|Kt(r, s)|‖g‖L1,s2 ([0,∞))
.

We normalize q = 1 and chose σ < 1 sufficiently small to write

Kt(r, s) =
1

rs

∞∫

0

eitσ
2
χc(σ)e(σ, r)e(σ, s) dσ +

1

rs

∞∫

0

eitσ
2
χ̃c(σ)e(σ, r)e(σ, s) dσ

= K l
t(r, s) +Kh

t (r, s) .
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4.1. Estimation of K l
t(r, s). In this section, we will prove that

Proposition 4.1. For any c > 0 sufficiently small, we have that

sup
r,s

|K l
t(r, s)| . t−

3
2 .

We prove Proposition 4.1 with a series of lemmas. Fix some constant k ≥ 4 and write

K l
t(r, s) =

1

rs

∫ ∞

0
eitσ

2
χc(σ)χk(σ

2r)χk(σ
2s)e(σ, r)e(σ, s) dσ(4.1)

+
1

rs

∫ ∞

0
eitσ

2
χc(σ)[χk(σ

2r)χ̃k(σ
2s) + χ̃k(σ

2r)χk(σ
2s)]e(σ, r)e(σ, s) dσ

+
1

rs

∫ ∞

0
eitσ

2
χc(σ)χ̃k(σ

2s)χ̃k(σ
2r)e(σ, r)e(σ, s)

=K1(r, s; t) +K2(r, s; t) +K3(r, s; t) .

By symmetry, we may always assume that r ≥ s. Furthermore, observe that the support of

χc(σ)χ̃k(σ
2r) is empty unless r ≥ k

c2 > 1 so we are free to assume that r ≥ s > 1 when

considering K3.

Lemma 4.2. We have that |K1(r, s; t)| . t−
3
2 .

Proof. Let a(σ; s, r) = (rs)−1χc(σ)χk(σ
2r)χk(σ

2s)e(σ, r)e(σ, s). With ′ denoting the derivative

respect to σ, it is easy to see that, as a function of σ, χk(σ
2s) = O∞(σ0) from the computation

χ′
k(σ

2r) = χ′(σ2r)(2σr) and the fact that σ2r ∼ 1 on the support of χ′(σ2r). Therefore, we may

use the bounds from Corollary 2.17 to see that

|a(σ; r, s)| . σ4, |a′(σ; r, s)| . σ2, |a′′(σ; r, s)| . 1 .(4.2)

Integrating by parts via the identity eitσ
2
= (i2tσ)−1 d

dσ [e
itσ2

] and suppressing the variables r

and s, we obtain

K1(r, s; t) =
1

2it

∞∫

0

eitσ
2
(a(σ)

σ

)′
dσ =

1

2it

∫

σ<t−
1
2

eitσ
2
(a(σ)

σ

)′
dσ +

1

2it

∫

σ≥t−
1
2

eitσ
2
(a(σ)

σ

)′
dσ .

By (4.2), we have
∣∣∣
(
a(σ,r,s)

σ

)′∣∣∣ . σrs, therefore, the first term is bounded by t−
3
2 rs. We apply

another integration by parts to the second term to bound it by

t−2

∫

σ≥t−
1
2

∣∣∣
1

σ

(a(σ)
σ

)′′∣∣∣+
∣∣∣
1

σ2

(a(σ)
σ

)′∣∣∣ dσ .

∫

σ≥t−
1
2

σ−2 dσ . t−
3
2 .(4.3)

Here, we omit the boundary term arising from the integration by parts since it is bounded by

the integral in (4.3). This finishes the proof.

�
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To estimate the other terms in (4.1), we prove the following oscillatory integral estimate.

Lemma 4.3. Suppose that for all r > k
c2
, ωr(σ) : [0,∞) → R is a C2 phase function and

δr : R → R is a weight function satisfying

(1) 0 < δr . ω′
r(σ) . r

(2) ω′′
r (σ) < 0 and |ω′′

r (σ)| . δr
σ

and ar(σ) : [0,∞) → C is a C2 amplitude function satisfying

(1) |ar(σ)| . σ2

r

(2) |a′r(σ)| . σ2

(3)
∫∞
0 σ−1(|a′′r (σ)|+ r|a′r(σ)|)χ(σ) dσ . 1

uniformly for σ ∈ [k
1
2 r−

1
2 , c] and r > 0. Then with χ(σ) := χc(σ)χ̃k(σ

2r) we have that

I±(r, s; t) :=

∞∫

0

ei(tσ
2±ωr(σ))χ(σ)ar(σ)d σ . t−

3
2

with an implicit constant that does not depend on ar or ωr.

Remark 4.4. In the application of this lemma, the phase and amplitude may depend additionally

on the parameter s. The last sentence of the statement indicates that as long as the bounds on

ωr and ar hold uniformly in s, the conclusion will also hold uniformly in s.

Proof. As before, we first integrate by parts via eitσ
2
= (2itσ)−1 d

dσ [e
itσ2

] to find that

I±(r, s; t) =
1

2it

∞∫

0

ei(tσ
2±ωr(σ))[b±(σ; r) + b̃(σ; r)]χ(σ) dσ

= I±1 + I±2

for

b±(σ; r) = ±iσ−1ω′
r(σ)ar(σ) b̃(σ; r) = σ−1[χ(σ)ar(σ)]

′ − σ−2ar(σ)] .

We first estimate I±2 . Split the integral as

I±2 =
1

2it

t−
1
2∫

0

ei(tσ
2±ωr(σ)b̃(σ; r) dσ +

1

2it

∞∫

t−
1
2

ei(tσ
2±ωr(σ)) b̃(σ; r) dσ

and observe that the assumptions on ar imply that

|b̃(σ; r)| . σ−1|a′r(σ)|+ σ−2|ar(σ)| . σ,

|b̃′(σ; r)| . σ−1|a′′r(σ)| + σ−2|a′r(σ)| + σ−3|ar(σ)| . σ−1[|a′′r (σ)| + r|a′r(σ)|]
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where for the final term in the second line we have used that σ−3|ar(σ)| . 1/(σr) . 1. Therefore,

the first integral is bounded by t−
3
2 and for the second we apply another integration by parts

(ignoring the easily estimated boundary term) to bound it by

t−2

∞∫

t−
1
2

(
|[σ−1b̃′(σ; r)]′|+ |σ−1b̃(σ; r)ω′

r(σ)|
)
χ(σ) dσ

. t−
3
2

∞∫

0

σ−1(|a′′r (σ)|+ r|a′r(σ)|)χ(σ) dσ . t−3/2 .

We now turn our attention to I±1 . Here, we must treat the ωr(σ) term as part of the phase

so we write

I±1 = (2it)−1

∫ ∞

0
eitΦ

±
r,t(σ)b±(σ; r)χ(σ) dσ with Φr,t(σ) := σ2 ± t−1ωr(σ) .

We have (Φ±
r,t)

′(σ) = 2σ± t−1ω′
r(σ), and (Φ±

r,t)
′′(σ) = 2± t−1ω′′

r (σ). As ω
′
r > 0 and ω′′

r < 0, only

Φ−
r,t has a stationary point and it is automatically non-degenerate.

Since the phase in I+1 is non-stationary, the integral is easily estimated. As before, the

integrand is O(σ) so we may split the domain of integration at t−
1
2 and integrate by parts to

find that

I+1 . t−
3
2 + t−2

∞∫

t−
1
2

∣∣∣∣∣
b′+(σ; r)

(Φ+
r,t(σ))

′
+ b+(σ; r)

d

dσ
[((Φ+

r,t)
′)−1(σ)]

∣∣∣∣∣χ(σ) dσ .(4.4)

Now by applying various properties of ar and ωr, we observe that

|b±(σ; r)| . σ−1rar(σ) . σ,(4.5)

|b′±(σ; r)| . σ−2|[ω′
rar](σ)|+ σ−1|[ω′′

rar](σ)|+ σ−1|[ω′
ra

′
r](σ)| . 1 + σ−1r|a′r(σ)|

so that because |(Φ+
r,t)

′(σ)|−1 . σ−1 we have
∣∣∣∣∣
b′+(σ; r)

(Φ+
r,t(σ))

′

∣∣∣∣∣ . σ−1 + σ−2r|a′r(σ)|

which makes an admissible contribution. Furthermore, observe that

|(Φ+
r,t)

′′(σ)|
|(Φ+

r,t)
′(σ)|2 .

2 + δr/(tσ)

(2σ + δr/t)2

so that
∣∣∣∣b+(σ; r)

d

dσ
[(Φ+

r,t)
−1](σ)

∣∣∣∣ . (2σ + δr/t)
−1 < σ−1.

Integrating now shows that |I+1 | . t−
3
2 .
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We now treat I−1 . Since the stationary point is not explicitly calculable, some care is required.

Because of the lower bound on ω′
r, we may find C depending only on c so that if t < δrC then

Φ′
r,t < −1 uniformly on suppχ. Using this, we break into cases depending on the value of t:

Case 1: t < δrC

Due to the lower bound on |Φ′
r,t|, the phase is non-stationary and therefore the integral may be

estimated similarly to I+1 .

Case 2: t ≥ δrC

In this regime, the phase may become stationary, however any stationary point will be non-

degenerate because (Φ−
r,t)

′ ≥ 2 on suppχ uniformly in r by the properties of ωr. Indeed, because

the second derivative is bounded below away from 0, we claim that we may always find some

σ∗ ∈ suppχ so that |(Φ−
r,t)

′(σ)| ≥ 2|σ − σ∗| on suppχ. If (Φ−
r,t)

′ vanishes at some σ∗ then this

is immediate from the mean value theorem. Otherwise, we know that Φ−
r,t is increasing on

[a, b] = suppχ so we must have that either (Φ−
r,t)

′(a) > 0 or (Φ−
r,t)

′(b) < 0 if Φ−
r,t does not vanish.

In either case, the claim is easily seen to hold with σ∗ = a or b, respectively.

Splitting I−1 as With this in mind, we write

I−1 =
1

2it

∫

|σ−σ∗|<t−
1
2

eitΦ
−
r,t(σ)b−(σ; r)χ(σ) dσ +

1

2it

∫ ∞

|σ−σ∗|>t−
1
2

eitΦ
−
r,t(σ)b−(σ; r)χ(σ) dσ .

As before, the integrand of the first integral is bounded so by integrating by parts in the second

we see that we need only estimate

t−2

∞∫

|σ−σ∗|>t−
1
2

(
b′−(σ; r)

(Φ−
r,t)

′(σ)
−
b−(σ; r)(Φ

−
r,t)

′′(σ)

((Φ−
r,t)

′(σ))2
+

b−(σ; r)

(Φ−
r,t)

′(σ)
χ′(σ)

)
dσ.

The term with χ′ is easily seen to be admissible whereas the rest of the integral may be bounded

by

t−2

∫

|σ−σ∗|>t−
1
2

(
|b′−(σ; r)|
|σ − σ∗|

+
|b−(σ; r)| sup|(Φ−

r,t)
′′(σ)|

|σ − σ∗|2

)
χ(σ) dσ

. t−
3
2

∞∫

0

|b′−(σ; r)|χ(σ) dσ + t−2

∫

|σ−σ∗|>t−
1
2

|b−(σ; r)| sup |Φ′′
r,t(σ)|

|σ − σ∗|2
dσ .

The bounds in (4.5) show that the first integral is bounded by t−
3
2 whereas for the second we

use that

|b−(σ; r)Φ′′
r,t(σ)| . t−1σ|ω′′

r (σ)| .
δr
t
. 1

to conclude. This finishes the proof. �

We are now ready to show that
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Lemma 4.5. We have that |K2(r, s; t)| . t−
3
2 .

Proof. Since χ̃k(σ
2r)χk(σ

2s) only has non-empty support if r > s, it suffices to consider
∫ ∞

0
eitσ

2 e(σ, r)

r

e(σ, s)χk(σ
2s)

s
χ(σ) dσ

where as in Lemma 4.3 χ(σ) = χc(σ)χ̃k(σ
2r). By Corollary 2.14, on the support of χ, e(σ, r) =

eiζr(σ)a+(σ, r) + e−iζr(σ)a−(σ, r). Therefore, we need to estimate the integrals

I± :=

∫ ∞

0
ei(tσ

2±ζr) a±(σ, r)

r

bs(σ)

s
χ(σ) dσ(4.6)

where bs(σ) := χk(σ
2s)e(σ, s).

We verify the conditions of Lemma 4.3. Proposition 2.13 shows that ζr satisfies the hypotheses

of the lemma so we need only check that ar,s(σ) = a−(σ)
r

bs(σ)
s satisfies the hypotheses as well,

uniformly in s. From Corollary 2.14 we obtain

|a−(σ, r)| . 1, |a′−(σ, r)| . σ−1, |a′′−|(σ, r) . r

and from Corollary 2.17 that

|bs(σ)| . sσ2, |b′s(σ)| . s[σ2χ 1
2
(σ2s) + χ 1

2
,k(σ

2s)], |b′′s(σ)| . s[σ2χ 1
2
(σ2s) + σ−2χ 1

2
,k(σ

2s)],

where χ 1
2
,k = (χ̃ 1

2
· χk)(σ

2s). Clearly |ar,s(σ)| . σ2

r and furthermore

|a′r,s(σ)| . r−1[σ2χ 1
2
(σ2s) + χ 1

2
,k(σ

2s)] +
σ

r
. σ2

since r−1 . σ2 on the support of χ. Proceeding, one may also check that

|a′′r,s(σ)| . σχ 1
2
(σ2s) + χ 1

2
,k(σ

2s)

It now follows from the computation
∫ ∞

0
σ−1χ 1

2
,k(σ

2s)χ dσ ≤ log(2k)/2

that
∞∫
0

σ−1(|a′′r,s(σ)| + r|a′r,s(σ)|) dσ . 1 so we conclude from Lemma 4.3 that I1 = O(t−
3
2 ). �

We next prove that

Lemma 4.6. |K3(r, s; t)| . t−
3
2 .

Proof. By Corollary 2.14, in this σ regime, e(σ, r)e(σ, s) can be written as a sum of the terms

e−i(ζr(σ)±ζs(σ))a−(σ, r)a±(σ, s), ei(ζr(σ)±ζs(σ))a+(σ, r)a±(σ, s)(4.7)

Therefore, it suffices to bound

∞∫

0

eitσ
2−i(ζr(σ)±ζs(σ)) a−(σ, r)

r

a±(σ, s)χ̃k(σ
2s)

s
χ(σ) dσ(4.8)
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∫ ∞

0
eitσ

2+i(ζr(σ)±ζs(σ)) a+(σ, r)

r

a±(σ, s)χ̃k(σ
2s)

s
χ(σ) dσ ,(4.9)

where χ(σ) := χc(σ)χ̃k(σ
2r). In order to apply Lemma 4.3, we must verify that the phases

ζr + ζs and ζr − ζs and the amplitude ar,s(σ) =
a+(σ,s)

r
a+(σ,s)χ̃k(σ

2s)
s satisfy the hypotheses of the

lemma (the latter being sufficient because a+ and a− obey the same bounds). When r = s, the

phase ζr − ζs degenerates to 0. Ignoring this easily treated case, the conditions on the phases

are satisfied by Proposition 2.13 so we consider the amplitude ar,s(σ). From Corollary 2.14, we

see that

|ar,s(σ)| .
χ̃k(σ

2s)

rs
.
σ2

r

and also that

|a′r,s(σ)| .
σ−1χ̃k(σ

2s)

rs
.

1

rs
1
2

which is indeed less than σ2 on the domain in question. Furthermore, we have that

|a′′r,s(σ)| . r−1

from which one can easily check that
∞∫
0

σ−1(|a′′r,s(σ)|+ r|a′r,s(σ)|)χ(σ) dσ . 1.

Applying Lemma 4.3 now completes the proof. �

Proof of Proposition 4.1. Combining the bounds for K1, K2 and K3 we obtain the statement.

�

4.2. Estimate of Kh
t (r, s). We will prove the following Proposition.

Proposition 4.7. Let c < 1 and t ≥ 1 then we have supr,s |Kh
t (r, s)| . t−

3
2 .

Similar to previous section we will prove Proposition 4.7 with a series of lemmas. We let

k ≥ 4 and write

Kh
t (r, s) =

1

rs

∞∫

0

eitσ
2
χ̃c(σ)χk(σr)χk(σs)e(σ, r)e(σ, s) dσ(4.10)

+
1

rs

∞∫

0

eitσ
2
χ̃c(σ)[χk(σr)χ̃k(σs) + χ̃k(σr)χk(σs)]e(σ, r)e(σ, s) dσ

+
1

rs

∞∫

0

eitσ
2
χ̃k(σ)χ̃k(σs)χ̃c(σ

2r)e(σ, r)e(σ, s) dσ

=K̃1(r, s; t) + K̃2(r, s; t) + K̃3(r, s; t).

We start estimating the first term.
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Lemma 4.8. |K̃1(r, s; t)| . t−
3
2 .

Proof. Let a(σ; r, s) = (rs)−1χ̃c(σ)χk(σr)χk(σs)e(σ, r)e(σ, s), then using (3.2), we have

a(σ; r, s) = χ̃c(σ)χk(σr)χk(σs)σ[e
π
σ − 1]−1(1 +O2(σs) +O2(σr)) .(4.11)

Therefore, we have

|a(σ; r, s)| . σ2χ̃c(σ)χk(σr)χc(σs) .

Moreover, since χc(σr) = O∞(σ0) we in fact, have a(σ; r, s) = χ̃c(σ)χc(σr)O2(σ
2). Hence, by

twice integration by parts, we obtain

∣∣∣
∞∫

0

eitσ
2
a(σ; r, s)dσ

∣∣∣ . t−2

∞∫

0

∣∣∣
( 1
σ

(a(σ; r, s)
σ

)′)′∣∣∣ dσ . t−2

∞∫

c

σ−2dσ . t−2 .(4.12)

We obtain no boundary terms since the support of the integral is away from both zero and

infinity. �

We next prove the following oscillatory lemma which will be useful to estimate the contribu-

tions of the rest of the terms.

Lemma 4.9. Let a(σ) = χ̃c(σ)O2(σ). Then one has

I(r, s; t) =

∞∫

0

eitσ
2±iϕu(σ)χ̃k(σr)a(σ) dσ . t−

3
2 max{u, r}

provided that the condition (4.13) holds for ϕu(σ) within the support of the integral:

ϕ′
u(σ) ∼ u, ϕ′′

u(σ) < 0, |ϕ′′
u(σ)| . σ−2u .(4.13)

Proof. As in the proof of Lemma 4.3, we start with an integration by parts and write

I±(r, s; t) =
1

2it

∞∫

0

eitσ
2±iϕu(σ)[b1(σ; r) + b2(σ; r, u)] dσ

=: I±1 + I±2

with

b1(σ; r) := σ−1(χ̃k(σr)a(σ))
′ − σ−2χ̃k(σr)a(σ), b2(σ; r, u) := ±iσ−1χ̃k(σr)a(σ)ϕ

′
u(σ) .

We apply another integration by parts to I±1 to bound it by

t−2

∞∫

0

|(σ−1b1(σ; r))
′|+ σ−1|b1(σ; r)ϕ′

r(σ)| dσ .
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We have, ϕ′
u(σ) . u, |b1| . σ−1 and |(σ−1b1)

′| . χ̃(σ)σ−3 . σ−2r. Therefore, I±1 .

t−2max{r, u}.
We next focus on I±2 . We let Φ±(σ) = σ2 ± t−1ϕu(σ). Note that the conditions on ϕu is

arranged so that only Φ−(σ) might have a critical point. In fact, as ϕ′′
u(σ) < 0 , for each fixed r,

if this critical point exist then it must be non-degenerate in the support of χ̃k(σr). Furthermore,

since ϕ′
u(σ) is a decreasing function with respect to σ, as opposed to 2σ, there is always σ∗ ∼ u/t

such that |Φ′
−(σ)| & |σ − σ∗|.

Having these in mind, we first focus on I−2 and divide I−2 as

I−2 = (2it)−1

∫

|σ−σ∗|≤t−
1
2

eitΦ±(σ)b2(σ; r, u) dσ + (2it)−1

∫

|σ−σ∗|>t−
1
2

eitΦ±(σ)b2(σ; r, u) dσ.

We have |b2(σ; r, u)| . u, therefore the first term in I−2 is bounded by t−
3
2u. We apply another

integration by parts to bound the second term in I−2 by

t−2

∫

|σ−σ∗|>t−
1
2

|b′2(σ; r, u)|
|Φ′

−(σ)|
+

|b2(σ; r, u)||Φ′′
−(σ)|

|Φ′
−(σ)|2

dσ(4.14)

where we omit the boundary term since it will be simply bounded by (4.14). Note that, we have

|b′2(σ; r, u)| . σ−1u. Therefore,

|b′2(σ; r, u)|
|Φ′(σ)| .

u

σ|σ − σ∗|
.

u

σ2
+

u

|σ − σ∗|2
.

Furthermore, as Φ′′(σ) = 2− t−1ϕ′′
u and |ϕ′′

u| . σ−2u

|b2(σ; r, u)||Φ′′(σ)|
|Φ′(σ)|2 .

u

|σ − σ∗|2
+

u2

|σ − σ∗|2σ2t
.

u

|σ − σ∗|2
+

uσ∗
|σ − σ∗|2σ2

.

Note that if σ∗ ≤ 1, then

|b2(σ; r, u)||Φ′′(σ)|
|Φ′(σ)|2 .

us

|σ − σ∗|2
.

as σ > c. On the other hand if σ∗ ≥ 1 and |σ − σ∗| ≤ σ∗/2 then σ ∼ σ∗ and

uσ∗
|σ − σ∗|2σ2

.
u

σ∗|σ − σ∗|2
.

u

|σ − σ∗|2
.

If σ∗ ≥ 1 and |σ − σ∗| ≥ σ∗/2 then

uσ∗
|σ − σ∗|2σ2

.
u

σ2σ∗
.

u

σ2
.

Therefore, the integrand in (4.14) is bounded by uσ−2+u|σ−σ∗|−2. The first term is integrable

away from zero and the integration of the second one in |σ − σ∗| ≥ t−
1
2 is bounded by ut

1
2 .

Therefore, we have I−2 . ut−3/2.
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Finally, we consider I+2 where we have no critical points. We apply another integration by

parts to this integral to see

I+2 . t−2

∞∫

0

|b′2(σ; r, u)|
|Φ′

+(σ)|
+

|b2(σ; r, u)||Φ′′
+(σ)|

|Φ′
+(σ)|2

dσ . t−2u

since, |b′2(σ; r, u)| . σ−1u, |Φ′
+(σ)|−1 . |σ+t−1ϕ′

u(σ)|−1 . σ−1 and |b2(σ; r, u)| . u, |Φ′
+(σ)|−1 .

|t−1ϕ′
u(σ)| . u/t.

�

We continue estimating the term K̃2(r, s; t).

Lemma 4.10. |K̃2(r, s; t)| . t−
3
2 .

Proof. Taking into account the symmetry in K̃2(r, s; t) with respect to r and s, we concentrate

on estimating the following expression:

(rs)−1

∞∫

0

eitσ
2
χ̃c(σ)χ̃k(σr)χk(σs)e(σ, r)e(σ, s) dσ.

Using Proposition 3.1, we compute

χ̃c(σ)χ̃k(σr)e(σ, r)χk(σs)e(σ, s) = ei(σr−σ−1 log(2σr))eiθ(σ)χ̃k(σr)χ̃c(σ)χk(σs)e(σ, s)(4.15)

+ e−i(σr−σ−1 log(2σr))e−iθ(σ)χ̃k(σr)χ̃c(σ)χk(σs)e(σ, s)

+ E(σ, r)χk(σs)e(σ, s) .

We first focus on the first two terms in (4.15). Taking u = r and applying Lemma 4.9 to

ϕr(σ) = σr − σ−1 log(2σr) and a(σ) = χ̃c(σ)e
±iθ(σ)χk(σs)e(σ, s), we proceed to estimate

(rs)−1

∞∫

0

eitσ
2±ϕr(σ)χ̃c(σ)χ̃k(σr)a(σ) dσ.(4.16)

Note that ϕ′
r(σ) = r+σ−2[log(2σr)−1]. Within the domain of χ̃k(σr), it holds that log(2σr) >

1, leading to the inequality r ≤ ϕ′
r(σ) ≤ (1 + c−1)r. Additionally, we find that ϕ′′

r (σ) =

−σ3[2 log(2σr) + 3] < 0. Therefore, in the support of χ̃k(σr), it’s evident that |ϕ′′
r (σ)| . σ−2r.

Utilizing (3.2), along with the fact that |θ′| . σ−2 and |θ′′| . σ−3, we observe that a(σ) =

sχ̃c(σ)O2(σ). Hence, by applying Lemma 4.9, we can conclude that |(4.16)| . t−
3
2 .

We next consider the last term in the expansion of χ̃c(σ)χ̃k(σr)e(σ, r)χk(σs)e(σ, s). That is

we need to bound

(rs)−1

∞∫

0

eitσ
2
χ̃k(σs)e(σ, s)E(σ, r) dσ(4.17)
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By (3.2) and (3.4) we have

|∂jσ{E±(σ, r)χk(σs)e(σ, s)}| . σ2−jrsχ̃c(σ)χk(σs) .(4.18)

Hence, by integration by parts as in (4.12), we bound (4.17) by t−2. This finishes the proof. �

We finally prove

Lemma 4.11. |K̃3(r, s; t)| . t−
3
2 .

Proof. We start computing the integrand in K̃3(r, s; t). Note that by Proposition 3.1, we may

write χ̃c(σr)e(σ, r)χ̃c(σs)e(σ, s) as the sum of the following terms

e±i([σr−σ−1 log(2σr)]+[σs−σ−1 log(2σs)])e±2iθ(σ)χ̃c(σr)χ̃k(σ)χ̃k(σs),(4.19)

e±([σr−σ−1 log(2σr))]−[σs−σ−1 log(2σs)])χ̃c(σr)χ̃k(σ)χ̃k(σs),

e±i(σs−σ−1 log(2σs))χ̃k(σs)e
±iθ(σ)E(σ, r),

e±i(σr−σ−1 log(2σr))χ̃k(σr)e
±iθ(σ)E(σ, s),

E(σ, s)E(σ, r) .

We first consider the last three terms in (4.19). Since the third and fourth terms are symmetric,

it will be enough to bound

(rs)−1

∞∫

0

eitσ
2±ϕr(σ)χ̃c(σ)χ̃k(σr)a±(σ)dσ + (rs)−1

∫ ∞

0
eitσ

2E(σ, r)E(σ, s) dσ ,(4.20)

where a±(σ) = e±iθ(σ))E±(σ, s) and ϕr(σ) = σr − σ−1 log(2σr). By previous lemma ϕr(σ)

satisfies the conditions in (4.13). Moreover, a±(σ) = sχ̃c(σ)O2(σ). Hence, by Lemma 4.9 we

conclude that the first term in (4.20) is bounded by t−
3
2 . For the second term in (4.20), we have

|E(σ, r)E(σ, r)| . 1, |∂jσ{E(σ, r)E(σ, r)}| . σ2−jrs, j = 1, 2 .(4.21)

Therefore, by integration by parts twice we can bound the second term in (4.20) by t−2.

We finally focus on the first two terms in (4.19). For the first term, we let ϕr+s(σ) =

[σr + σ−1 log(2σr)] + [σs − σ−1 log(2σs) and estimate the integral

(rs)−1

∞∫

0

eitσ
2±iϕr+s(σ)χ̃c(σ)χ̃k(σr)χ̃k(σs)e

±2θ(σ) dσ.(4.22)

Note that (4.22) is symmetric with respect to r and s. Therefore, without loss of generality,

we assume r ≥ s and use Lemma 4.9 for a±(σ) = χ̃c(σ)χ̃k(σs)e
±2θ(σ). While it is evident that

a±(σ) = sχ̃c(σ)O(σ), we still need to demonstrate that ϕr+s satisfies the conditions in (4.13).

We calculate ϕ′
r+s(σ) = (r + s) + σ−2 [log(2σr) + log(2σs)− 2]. Thus, within the domain

of χ̃c(σs)χ̃c(σr), we have r + s ≤ ϕ′
r+s ≤ (r + s)(1 + 1/c). It is also possible to compute
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ϕ′′
r+s = −σ3 [2 log(2σr) + 2 log(2σs) + 6] < 0. Noting that r + s ≤ 2r, we can deduce from

Lemma 4.9 that |(4.22)| . t−
3
2 .

Finally, we consider the second term in (4.19) and estimate

(rs)−1

∞∫

0

eitσ
2±iϕr−s(σ)χ̃k(σr)a(σ) dσ(4.23)

where ϕr−s(σ) = [σr+σ−1 log(2σr)]− [σs−σ−1 log(2σs) and a(σ) = χ̃c(σ)χ̃k(σs). We compute

ϕ′
r−s(σ) = (r−s)+σ−2 log(r/s). Since we can assume r ≥ s due to the symmetry, we immediately

have ϕ′
r−s(σ) ≥ r−s. Furthermore, by the mean value theorem, we have 0 < log(σr)− log(σs) .

(r − s)s−1 and

σ−2 log(r/s) .
(r − s)

σ2s
. c−1(r − s)

in the support of σs ≥ k. Hence, ϕ′
r−s(σ) ∼ r − s and ϕ′′

r−s(σ) . σ−2(r − s). Moreover,

a(σ) = sχ̃c(σ)O2(σ) and therefore, by Lemma 4.9 we have |(4.23)| . t−
3
2 .

�

Proof of Proposition 4.7. Combining the bounds for K̃1, K̃2 and K̃3, we obtain the statement.

�

Appendix A. Kernel of the Coulomb evolution

The analysis above stems from the following explicit representation of the time evolution of

H0,q for q > 0:

[eitH0,qf ](r) = − q

2r

∞∫

0

∞∫

0

eitσ
2
M iq

2σ
, 1
2
(2iσr)M iq

2σ
, 1
2
(2iσs)sf(s)σ−1[e

qπ
σ − 1]−1 dσ ds(A.1)

where M iq
2σ

, 1
2
(·) is the Whittaker-M function (see [8, Ch 13]). Upon substituting σ with qσ,

equation (A.1) transforms into:

q

2r

∞∫

0

∞∫

0

eitq
2σ2
e(qσ, r)e(qσ, s)sf(s)σ−1[e

π
σ − 1]−1 dσ ds .

Here, the function e(qσ, r) is defined as:

e(qσ, r) := −iσ− 1
2 [e

π
σ − 1]−

1
2M i

2σ
, 1
2
(2iqσr).

This representation is obtained by diagonalizing rH0,qr
−1 = − d2

dr2 +
q
r via the distorted Fourier

transform. The purpose of this section is to explain the proof of (A.1), namely

Theorem A.1. For all f ∈ rC∞
0,rad(R

3), the equality (A.1) holds.
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A.1. Review of Weyl-Titchmarsh theory. We begin by briefly recalling some of the basic

spectral theory of half-line Schrödinger operators with a regular left endpoint. In particular, we

summarize the construction of the distorted Fourier transform. This theory is well-known and

more details may be found in: [4], [5, Ch.9], [10, Sect. XIII.5], [11, Ch. 2], [15], [18], [21, Ch.

10], [25], [27], [28, Ch. 2], [30, Ch. VI], [34, Ch. 6], [35, Ch.X], [41, Chs. II, III], [43, Sects.

7–10] While our potential is not regular at 0 due to the 1
r singularity, the theory of singular

potentials is developed in parallel to the regular case.

Consider the symmetric Schrödinger operator

H = − d2

dx2
+ V (x), V = V ∈ L1

loc(R+)

with domain D(H) = C2
0(R+). We assume that V ∈ L1(0, 1) and that it is limit point at ∞,

that is, for any z ∈ C \ R, the space of solutions to Hf = zf that are L2 at ∞ is at most

1-dimensional. For instance, it is sufficient (but by no means necessary) to assume that V is

bounded at ∞. For α ∈ [0, π], let Hα be the self-adjoint extension of H with the domain

Dα := {g ∈ H2(R+) | sin(α)g′(0) + cos(α)g(0) = 0}.

We first define φα(z, x) and θα(z, x) as the fundamental system of solutions to Hαf = −z2f ,
for z ∈ C, that satisfy

φα(z, 0) = −θ′α(z, 0) = − sin(α), φ′α(z, 0) = θα(z, 0) = cos(α), W (φ(z, ·), θ(z, ·) = 1.(A.2)

Because V is L1 near 0, the existence of φα and θα is assured by Picard iteration as is their

analyticity as functions of z. Furthermore, they are real-valued for z2 ∈ R.

We next define a Weyl solution ψα(z, ·) near infinity (or zero) to be a non-zero solution to

Hαf = −z2f that is L2 near infinity (or zero). We note that, as long as V is continuous and

real valued in (0,∞), there exist at least one Weyl solution near infinity and at least one Weyl

solution near zero, see Theorem X.6 of [35]. Since H is in the limit point case at infinity the

Weyl solution near infinity is unique (up to scaling), whereas because H is in the limit circle

case at zero, all solutions are Weyl solutions near zero. Hence, we can uniquely characterize the

Weyl solution at infinity as

ψα(x, z) = θα(x, z) +m(z)φα(x, z)

where m(z) = W (θ(z, ·), ψ(z, ·)), is the Weyl-m function, which is analytic for z2 ∈ C\R. Note

that this representation is possible because the θα coefficient of ψα cannot vanish or ψα would

be an eigenfunction for non-real z2.
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The significance of the Weyl solution is that it allows us write the resolvent kernel or Green’s

function via

(Hα + z2)−1f(x) =

∞∫

0

[φ(x, z)ψ(y, z)χ[0<x<y] + φ(y, z)ψ(x, z)χ[x>y>0]]f(y) dy.(A.3)

With these objects in hand, we are ready to define the distorted Fourier transform:

Proposition A.2. For f ∈ C0([0,∞)) let

[Uαf ](λ) =

∫ ∞

0
f(x)φα(x, λ) dx .

Then we have the following Plancharel theorem

‖f‖L2(R+) = ‖Uαf‖L2(R,ρ)

and inversion formula

f(x) = lim
b→∞

∫ b

−b
[Uαf ](λ)φα(x, λ) ρ(dλ) .

In particular, for any F ∈ C(R) and f ∈ C∞
0 ([0,∞)), we have

[F (Hα)f ](·) =
∫

σ(Hα)

∫ ∞

0
F (σ2)φα(σ, ·)φα(σ, x)f(x) dx ρ(dσ).(A.4)

We refer to φα as the distorted Fourier basis and to ρ as the associated spectral measure. The

proof comes from plugging (A.3) into Stone’s formula. Recall that Stone’s formula is given for

λ2 ∈ R and f ∈ C∞
0 ([0,∞)) as

lim
ε→0+

1

πi

b∫

a

〈[R(λ2 + iε)−R(λ2 − iε)]f, f〉 λ dλ = 〈[E(a, b) +
1

2
(E({a}) + E({b}))]f, f〉 ,

where −∞ ≤ a ≤ b ≤ ∞, E(·) is the spectral resolution of Hα, R(z) := (Hα − z)−1 is the

resolvent operator, and we adopt the convention E({±∞}) = 0. The result then follows from

the fact that ρ(dλ) is recoverable via the weak-∗ limit as ε→ 0 of

λ

πi
[m(λ2 + iε)−m(λ2 − iε)] dλ .

A.2. Proof of Theorem A.1. This section closely follows [18], which in turn relies on the idea

of [22] to determine the spectral measure via Stone’s formula. Let Lq be the half-line Schrödinger

operator that is unitarily equivalent to H0,q, which we recall is the restriction of the Coulomb

Hamiltonian H to the radial sector. In order to apply the above scheme to Lq, we must first

make sense of it as a self-adjoint operator. First, recall the following simple consequence of the

Kato-Rellich theorem:
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Lemma A.3 (Theorem X.15 in [35]). Suppose that V : R3 → R is equal to V1 + V2 where

V1 ∈ L2(R3) and V2 ∈ L∞(R3). Then −∆ + V is essentially self-adjoint on C∞
0 (R3) and

self-adjoint on H2(R3).

Clearly then our Hamiltonian H is a self-adjoint operator with domain H2(R3). Recall that

Lq is the half-line Schrödinger operator given by conjugating H0,q by r. Thus, it is automatically

self-adjoint on the domain rH2
rad(R

3) (where we regard functions on H2
rad(R

3) as functions on

R+). In particular, for g ∈ D(L) the function g(r)
r is continuous at r = 0.

To compute the resolvent of Lq = L, first observe that a fundamental system of solutions to

Lf = −z2f for ℜz2 > 0 is given by the Whittaker functions [8, 13.14]

M− q
2z

, 1
2
(2zr), W− q

2z
, 1
2
(2zr).

These are solutions of Whittaker’s equation

W ′′(ω) +

(
−1

4
+
κ

ω
+

1
4 − µ2

ω2

)
W (ω) = 0

which is related to Lf = −z2f via r = ω
2z for κ = − q

2z and µ = 1
2 . By [8, (13.14.6)], we have

M− q
2z

, 1
2
(2zr)

2z
= re−rz

[
1 +

∞∑

s=1

(q + 2z)(q/2 + 2z) · . . . · (q/s + 2z)

s!
rs
]

(A.5)

and thus φ(z, r) := (2z)−1M− q
2z

, 1
2
(2zr) is the unique solution satisfying the boundary condition

for D(L) which is normalized so that φ′(0, z) = 1. It is real analytic for z2 ≤ 0. Furthermore,

by [8, (13.14.26)] we compute the Wronskian as

W [φ(z, r),W− q
2z

, 1
2
(2zr)] =W [M− q

2z
, 1
2
(·),W− q

2z
, 1
2
(·)] = − 1

Γ(1 + q
2z )

= − 2z

qΓ(q/(2z))
.

so we set ψ(z, r) := − q
2zΓ(q/(2z))W− q

2z
, 1
2
(2zr) to ensure that W [φ,ψ] = 1. This gives us the

following representation of the resolvent of L:

Proposition A.4. For ℜz > 0, the resolvent kernel of L is given by

(L + z2)−1(r, s) =




φ(z, r)ψ(z, s) , 0 < r ≤ s

ψ(z, r)φ(z, s) , 0 < s ≤ r
.

Proof. This follows from the form of the resolvent of a Sturm-Liouville operator and the fact

that φ is the unique solution satisfying the boundary condition of D(L). �

In particular, if we let −z2 = σ2 ± iε for σ2 ≥ 0, then we obtain

(L − (σ2 ± i0))−1(r, s) =




φ(±iσ, r)ψ(±iσ, s) , 0 < r ≤ s

ψ(±iσ, r)φ(±iσ, s) , 0 < s ≤ r
.
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These considerations suggest that, as in the classical theory, φ should give the distorted Fourier

basis. Moreover, the limiting forms of the Whittaker functions [8, 13.14.20-1] show that ψ is the

only decaying solution at ∞ i.e. it is the Weyl solution.

To proceed, we need to define the θ function to determine the spectral measure ρ. Due to

the strong singularity of V at zero, we will not be able to pick the θ function as in (A.2). In

[18], Gesztesy and Zinchenko proved that if V is real valued and H is in the limit point case at

both end points then Weyl-m function exist provided that Hf = zf has a solution φ̃(z, x) in O,

an open neighborhood of R, that is (a) analytic for x ∈ (0,∞) and z ∈ O (b) real valued for

x ∈ (0,∞) and z ∈ R, and (c) in L2 around x = 0 for z ∈ C\R with sufficiently small |ℑz|, see
Hypothesis 3.1 of [18]. They further showed that if the singularity point of V and the end point

of H agree, then Weyl-m function is a scalar function of z. We note, that φ(z, r) holds (a),(b)

and (c).

We follow a similar argument that is used in [18], and find the fundamental system of solutions

to Lf = −z2f at a reference point x0 = 1. We take the first solution as φ(z, r) and pick a θ(z, r)

such that W (φ(z, r), θ(z, r)) = 1, which we are free to do by Picard iteration from this point.

Then, we must have

ψ(z, r) = θ(z, r) +m(z)φ(z, r), m(z) =W (θ(z, r), ψ(z, r)).(A.6)

As in the proof of Proposition A.4, we use Stone’s formula to obtain

[eitLf ](r) =

∞∫

0

∞∫

0

eitσ
2
φ(iσ, r)φ(iσ, s)f(s) ρ(dσ) ds,

dρ

dσ
=

2σ

π
ℑ(m(iσ)).(A.7)

Here, we have used that σ(L) = σac(L) = [0,∞) since L is a positive operator and for any

σ ∈ R we have φ(±iσ, r), ψ(±iσ, r) ∈ L2
δ\L2 for δ > 1

2 , where L
2
δ := {(1 + r2)−

δ
2 f ∈ L2}. Note

that L2
−δ, being the dual space of L2

δ , is dense in L2.

Finally, let us determine the density of ρ. Note that θ(z, r) has to be real analytic for z = iσ,

therefore, we have to have θ(iσ, r) = ℜ(ψ(iσ, r)) + b(σ)φ(iσ, r) for some real valued b(σ) as

W [θ(iσ, ·), φ(iσ, ·)] = ℜ(W [ψ(iσ, ·), φ(iσ, ·)]) = 1 .

Hence, we compute

m(iσ) =W (θ(iσ, ·), ψ(iσ, ·))

= 2−1W [ψ(iσ, ·) + ψ(iσ, ·), ψ(iσ, ·)] + b(σ)

= ℑ(ψ(iσ, ·)ψ′(iσ, ·)) + b(σ).

Moreover, we have as r → 0,

ψ(iσ, r) = −1 + c(iσ)r − r log r +O(r2−)



58 A. BLACK, E. TOPRAK, B. VERGARA BIGGIO, AND J. ZOU

where ℑ(c(iσ)) = σ − q[π2 + ℑ(ψ(0)(1 − iq/(2σ)))] and ψ0(z) is digamma function. Therefore,

ℑ(m(iσ)) = ℑ(c(iσ)) and using ℑ(ψ0(1+ iy)) = −(2y)−1+ π
2 coth(πy), see [8, (5.7.5)], we obtain

dρ(σ) = 2qσ[e
qπ
σ − 1]−1 and this in (A.7) gives

[eitLf ](r) = −q
2

∞∫

0

∞∫

0

eitσ
2
M iq

2σ
, 1
2
(2iσr)M iq

2σ
, 1
2
(2iσs)f(s)σ−1[e

qπ
σ − 1]−1 dσ ds(A.8)

= −q
2

∞∫

0

∞∫

0

eitq
2σ2
M i

2σ
, 1
2
(2iqσr)M i

2σ
, 1
2
(2iqσs)f(s)σ−1[e

π
σ − 1]−1 dσ ds .

Using the fact that L = rH0,qr
−1, we obtain (A.1).
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[14] M.B. Erdoğan and W. Schlag, Dispersive estimates for Schrödinger operators in the presence of a resonance

and/or an eigenvalue at zero energy in dimension three. I, Dyn. Partial Differ. Equ. 1 (2004), no. 4, 359–379.

MR2127577

[15] W. N. Everitt, A personal history of the m-coefficient, J. Comput. Appl. Math. 171 (2004), no. 1-2, 185–197.

MR2077204

[16] L. Fanelli, V. Felli, M.A. Fontelos, and A. Primo, Time decay of scaling critical electromagnetic Schrödinger

flows, Comm. Math. Phys. 324 (2013), no. 3, 1033–1067. MR3123544

[17] C. Fulton, Titchmarsh-Weyl m-functions for second-order Sturm-Liouville problems with two singular end-

points, Math. Nachr. 281 (2008), no. 10, 1418–1475. MR2454944

[18] F. Gesztesy and M. Zinchenko, On spectral theory for Schrödinger operators with strongly singular potentials,

Math. Nachr. 279 (2006), no. 9-10, 1041–1082. MR2242965

[19] M. Goldberg and W. Schlag, Dispersive estimates for Schrödinger operators in dimensions one and three,

Comm. Math. Phys. 251 (2004), no. 1, 157–178. MR2096737

[20] N. Hayashi and P.I. Naumkin, Asymptotics for large time of solutions to the nonlinear Schrödinger and

Hartree equations, Amer. J. Math. 120 (1998), no. 2, 369–389. MR1613646

[21] E. Hille, Lectures on ordinary differential equations, Addison-Wesley series in mathematics, Addison-Wesley

Publishing Company, 1968.

[22] D. Hinton and A. Schneider, On the spectral representation for singular selfadjoint boundary eigenvalue

problems, Contributions to operator theory in spaces with an indefinite metric (Vienna, 1995), 1998, pp. 217–

251. MR1729597
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