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Abstract. We study the scattering properties of Schrödinger operators with bounded potentials
concentrated near a subspace of Rd. For such operators, we show the existence of scattering states
and characterize their orthogonal complement as a set of surface states, which consists of states
that are confined to the subspace (such as pure point states) and states that escape it at a sublinear
rate, in a suitable sense. We provide examples of surface states for different systems including those
that propagate along the subspace and those that escape the subspace arbitrarily slowly. Our proof
uses a novel interpretation of the Enss method [12] in order to obtain a dynamical characterisation
of the orthogonal complement of the scattering states.
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1. Introduction

In this paper, we study the scattering properties of Schrödinger operators with potentials con-
centrated near a subspace of Rd. This is one of many models of a quantum particle interacting
with a surface. For such operators, we show the existence of scattering states and characterize
their orthogonal complement as a set of surface states, which consists of states that are confined to
the subspace (such as pure point states) and states that escape it at a sublinear rate, in a suitable
sense. We provide examples of surface states for different systems including those that propagate
along the subspace and those that escape the subspace arbitrarily slowly.

1.1. Motivation and prior work. Our work is motivated by the vast literature studying the
scattering theory of Schrödinger operators with potentials that decay at infinity. Typically, these
are self-adjoint operators on H = L2(Rd) of the form

H = H0 + V(1.1)

where H0 = −∆ and V , the potential, is a real-valued multiplication operator. For short range
potentials, that is, those with sufficiently fast decay, one is interested in showing that the wave
operators

Ω± = s-lim
t→∓∞

eitHe−itH0

exist on all of H and are asymptotically complete in the sense that their range is equal to the
continuous subspace of H. Intuitively, states in the range of Ω± behave like free waves as t→ ∓∞,
in the following sense: if Ω−ψ = ϕ, then

lim
t→∞
‖e−itH0ψ − e−itHϕ‖ = 0

Asymptotic completeness then means that all states in the continuous subspace of H scatter to
free waves.

We make no attempt to comprehensively review the multitude of results concerning which as-
sumptions on V yield asymptotic completeness. However, we mention the seminal work of Agmon
[1] (and the references therein), in which asymptotic completeness is shown for V satisfying, for
instance,

V (x) = O(|x|−(1+ε)) as x→∞

Our paper is based on the work on Enss [12] showing asymptotic completeness for potentials
satisfying a short range condition, which for a bounded potentials can be written as

‖V χBcr‖ ∈ L
1(r)(1.2)

where χ denotes an indicator function and Bc
r is the complement of the ball of radius r in Rd.

In a related direction, many authors have investigated the scattering theory of Schrödinger
operators with anisotropic potentials that have different behavior in different coordinate directions
(see, for example, [3, 6, 8, 9, 25]). Building on one-dimensional results of Carmona [3], Davies and
Simon [8] investigated potentials V that are periodic in the coordinate directions {x1, ..., xd−1} but
with different spatial asymptotics as xd goes to plus or minus infinity. They showed that in this
setting, the absolutely continuous subspace of H decomposes into pieces that, under the evolution
of H, move to ±∞ in the xd coordinate and surface states that are localized near the hypersurface
{xd = 0} for all time. We review this result more thoroughly in Section 6, but for now we note
that even if V goes to 0 rapidly as xd → ±∞, there may still exist surface states in the ac subspace
of H. Furthermore, a state in the range of Ω± cannot be localized near a hypersurface for all
time (see Section 5.3) so the presence of ac surface states may be thought of as an obstruction
to asymptotic completeness. Such states may also be seen if V decays sufficiently slowly in some
directions. In this case, originally studied by Yafaev [29], one may observe states which disperse
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away from the support of V slower than a free wave (see Section 6 for more details). Finally, we
remark that asymptotic completeness may also fail in the sense that Ran(Ω−) may no longer be
equal to Ran(Ω+). For d = 3, one may observe such behavior in settings similar to those considered
below [6].

In view of the circle of ideas recalled above, one may naturally ask what can be said about the
scattering theory of potentials that decay at infinity but only in some coordinate directions. By
this, we mean a potential V that is concentrated (in a sense to be specified later) near the surface
{x ∈ Rd | xk+1 = · · ·xd = 0} for some 1 ≤ k < d. The aforementioned class of examples shows
that one cannot expect asymptotic completeness in this setting because some states may undergo
transport along the surface. However, one has the following very plausible physical picture: a state
which moves away from the surface as time evolves should feel the influence of the potential less
and less, so it should behave asymptotically like a free particle and therefore be in the range of the
wave operator. This suggests that there is a dichotomy between states that remain near the surface
and those that are asymptotically free irrespective of the precise nature of V . So, one should really
ask: for V as above, is the orthogonal complement of Ran Ω± given by the space of surface states?
The present paper is an affirmative answer to this question.

Before stating our results, let us mention that many authors have studied the spectral and
scattering theory of surface potentials due in part to their physical importance. We refer the reader
to [6, 10, 14, 15, 16, 18, 19, 20] for some idea of the questions that have been investigated for surface
models. In these papers and others, the authors are usually interested in surface potentials with
some additional structure. For instance, among other examples, Davies and Simon [8] consider a
partially periodic potential so that they may leverage symmetry. Other authors investigate random
surface potentials [10, 15] or a (possibly discrete) half-space model with some boundary condition
(such as [14, 18, 19, 20]). In many of these cases, additional structure allows for a better description
of the surface subspace than one might hope for in full generality, either by showing it is trivial
[18] or by giving a more restrictive definition [8]. In this paper, we make significantly weaker
assumptions on V - only that it is bounded and has the right decay away from the surface - at the
price of a more inclusive description of the surface states. Therefore, many of these prior models
fall within the purview of our theorem.

1.2. Model and results. We consider a self-adjoint operator H on H = L2(Rd) of the form (1.1),
where V is a real-valued bounded potential such that

suppV ⊂ {x ∈ Rd | ‖x⊥‖ = ‖(xk+1, . . . , xd)‖ ≤ r0} =: Skr0
sup
x∈Rd

|V (x)| = M <∞

for some r0 > 0 and 1 ≤ k < d. Here and throughout, ‖ · ‖ refers to either the euclidean norm
or the norm of H. Since k is fixed throughout the paper, we will suppress it in the notation. We
define the space of surface states to be

Hsur = {ψ ∈ H | ∀v > 0, lim
t→∞
‖χSvte−itHψ‖ = ‖ψ‖}

Our main theorem is that

Theorem 1.1.

(i) (Existence) For all ψ ∈ H the limits Ω±ψ exist. Furthermore, σ(H0) ⊂ σac(H).
(ii) (Completeness) We have

H = Hsur ⊕ Ran(Ω−)

The existence result may essentially be found in [16], though we supply our own proof. See also
Chapter 2, Section 10 of [21] for a related existence theorem.
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Remark 1.2. The above theorem may be easily generalized to allow V satisfying

‖χScRV ‖op ∈ L1
R(1.3)

sup
x∈Rd

|V (x)| = M <∞(1.4)

that is, potentials V which decay perpendicular to the surface in a short range way. Broadly
speaking, the L1 condition enters in a similar way as in [12]. For simplicity of presentation we have
restricted to the case where χcSRV is in fact 0 for R large enough, but we have explained how to
adapt our proof to this generalization in Appendix B.

Remark 1.3. The definition of Hsur is closely related to the notion of a minimal velocity estimate
as exhibited in [17]. A typical estimate of this type for a state ψ might be of the form

‖χBvte−itHψ‖ ≤ Ct−`‖ψ‖
for some ` > 0 and all v less than some v0. Such an estimate usually results from a Mourre estimate
on some energy interval, in the presence of which one already expects asymptotic completeness (for
a self-contained exposition of these ideas, see Chapter 4 of [11]). An easy corollary of our Theorem
1.1 is that a state ψ is a scattering state if it satisfies a minimal velocity estimate relative to the
region Svt, i.e., if for some v > 0

lim inf
t→∞

‖χSvte−itHψ‖ = 0

Thus, our theorem provides a dynamical criterion for asymptotic completeness, which may be
verified via commutator methods.

1.3. Methodology: the Enss Method of scattering. We rely on the Enss method of scattering
originally developed in [12], whose geometric flavor is well-suited to our problem. The Enss method
realizes the physical intuition developed above: if V satisfies (1.2), a state which moves away from
the origin under the H evolution is asymptotically free. In Enns’ original argument, one fixes a
state ψ in the absolutely continuous subspace of H and finds a sequence of times tn →∞ for which
ψn = e−itnHψ satisfies

‖χBnψn‖ → 0

so that ψn is moving away from the origin. This is possible for V a relatively bounded perturbation
of H0 with relative bound less than 1 by the celebrated RAGE theorem [2, 26], which says that a
state ψ in the continuous subspace escapes every compact set K in a time mean sense:

lim
T→∞

1

T

∫ T

0
‖χKψt‖ dt = 0

Along the sequence {tn}∞n=1, one then performs a phase space decomposition of ψn into incoming
and outgoing pieces:

ψn = ψn,in + ψn,out + o(1)

Both ψn,in and ψn,out are spatially localized far from the origin with momenta that point roughly
toward or away from the origin respectively. These phase space properties of ψn,in/out guarantee
that

lim
n→∞

‖(Ω− − id)ψn,out‖ = 0

lim
n→∞

‖(Ω+ − id)ψn,in‖ = 0

from which asymptotic completeness is an easy consequence.
In trying to apply the above outline to our setting verbatim, one encounters the problem that

one cannot use the RAGE theorem to see that a continuous state moves away from the surface, as
the surface is not compact. To proceed, we provide a novel interpretation of Enss original argument
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that does not rely on any a priori properties of the continuous subspace. Working in the original
Enss setting, we fix a state ψ orthogonal to Ran(Ω−) and perform a phase space decomposition
along an arbitrary time sequence increasing to infinity, now keeping the piece of ψ close to the
origin (in the above, this piece was o(1) by the RAGE theorem):

ψn = ψn,bounded + ψn,in + ψn,out + o(1)

Here, ψn = e−itnHψ as before and ψn,bounded is essentially χBnψn. One can argue that ψn,in goes to
0 as n→∞ and the fact that ψ ⊥ Ran(Ω−) implies the same for ψn,out. Thus, ψn is asymptotically
equal to ψn,bounded and by varying over all time sequences one may show that

lim
n→∞

lim inf
t→∞

‖χBnψt‖ = ‖ψ‖(1.5)

In other words, Enss’ argument provides a geometrical characterization of the orthogonal comple-
ment of Ran(Ω−) as the set of bound states. Indeed, it is a consequence of the RAGE theorem
that the states satisfying (1.5) are precisely the pure point states of H, but one need not know this
to obtain this interesting theorem.

Our adaptation of this argument to surface scattering will require that the operators implement-
ing the phase space decomposition have better monotonicity properties than those originally used
by Enss. To this end, we adopt Davies’ [7] point of view on the Enss’ method by defining families of
phase space observables. This formulation allows us to define the decomposition in a natural way,
via operators which are almost projections onto subsets of phase space. Choosing these operators
in the correct way allows us to study the evolution in a lower dimensional space, i.e. only in the
directions perpendicular to the surface. For the reader’s convenience, we have collected various
results about these observables in Appendix A. This is particularly important because throughout
the proof we will use a phase space characterisation of the surface states. The precise definition
of this characterisation will be given in Section 2.2, but for now it can be described as consisting
of states that either evolve close to the surface or propagate away from the surface with momenta
roughly parallel to the surface.

Remark 1.4. A natural question that arises from these two characterisations of Hsur is: can there
truly be surface states that propagate away from the subspace? If so, these states would have to
do so at a sublinear rate and with highly restricted momenta. Indeed, following [8], one may define

H′sur(H) = {ψ | lim
R→∞

sup
t≥0
‖χScRe

−itHψ‖ = 0}

which contains all states that evolve close to the subspace. This definition will be convenient to
work with in Section 6. As shown in Proposition 6.1, H′sur ⊂ Hsur, so we may reformulate our
question as: is there some choice of potential V so that Hsur \ H′sur(H) is non-empty?

Indeed, such potentials do exist: following Yafaev [29], in Section 6 we show that V decaying

like a long range potential in the x‖ direction may produce such states. However, we will show in
Section 6 that at least for V partially periodic or V that decays to a limit at ∞ quickly enough,
H′sur = Hsur.

Outline of paper. In Section 2 we provide some notation as well as define H̃sur, the auxiliary
surface subspace that will be used in the proof of Theorem 1.1 extensively. In Section 3, we prove (i)
of Theorem 1.1, in other words the existence of scattering states. In Section 4, we develop the Enns
decomposition (Theorem 4.1) for our setting, stated using the phase space observables of Davies.
The decomposition is proved, as in the original Enss paper [12], by combining Cook’s method with
several applications of non-stationary phase. This decomposition is the main ingredient used to
show, in Section 5.1, that H̃sur and Ran(Ω±) span all of H, as described in the sketch above. In
Section 5.2 we show that the intersection of these two subspaces is trivial, yielding our first com-
pleteness result (Lemma 5.2). For this, we show that the intersection is unitarily equivalent to
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H̃sur(H0), the surface states of the free evolution, which we show to be trivial by a direct compu-
tation. Then, we again use the method of non-stationary phase to give a better characterization
of the surface states, namely to show that H̃sur is in fact equal to Hsur. In Section 6 we consider
some special classes of potentials and discuss their surface states, relating them to known results
where relevant. Finally, in Appendix B, we explain how to accommodate short range decay of the
potential away from the surface.

Acknowledgment. We are grateful to our advisor, Wilhelm Schlag, for leading us towards this
problem, and for his guidance and encouragement during this work. We also thank Michael Wein-
stein and Amir Sagiv for discussions that improved the definition of Hsur.

2. Definitions and Results

2.1. Notation and Conventions. For any ` > 0 we use the following

• We let H denote L2(Rd) with norm ‖ · ‖ and use the convention that its inner product 〈·, ·〉
is anti-linear in the first argument and linear in the second.
• The symbols ‖ · ‖ and 〈·, ·〉 will also be used for the norm and inner product on R`.
• d(·, ·) is used for the distance between points or subsets of R`.
• Br will mean the ball of radius r centered at the origin in either R` or H depending on

context.
• For A ⊂ R`, Ac denotes its complement.
• χA will mean the indicator function of A ⊂ R`.
• A b B denotes that A is compactly contained in B.
• S = S(Rd), the Schwartz space.
• We use the following convention for the Fourier transform of f ∈ H:

f̂(ξ) = F(f)(ξ) = (2π)−
d
2

∫
Rd

f(x)e−ixξ dx

F−1(f̂)(x) = (2π)−
d
2

∫
Rd

f̂(ξ)eixξ dξ

• For x = (x1, . . . , xd) ∈ Rd = Rk × Rd−k we will often write x‖ = (x1, . . . , xk) and x⊥ =
(xk+1, . . . , xd) ∈ Rd−k for k some integer 1 ≤ k ≤ d−1. We will refer to the Rk components
as longitudinal and the Rd−k components as transverse.
• SR ⊂ Rd is the set of points within R of Rk × {0}:

SR = {x ∈ Rd | ‖x⊥‖ ≤ R}

• For α > 0 define the following family of subspaces of H

Dα = Span({ψ‖i ⊗ ψ
⊥
i | ψ

‖
i ∈ L

2(Rk), ψ⊥i ∈ S(Rd−k), supp ψ̂⊥i b B
c
α})

• For the definitions of Pδ(E) and η̂x,p;δ see Section 2.2 below.

2.2. Definition of the auxiliary surface subspace. As mentioned above, for the proof of part
(ii) of Theorem 1.1, asymptotic completeness, it will be more convenient to work with a different

subspace, denoted H̃sur. We will show in Section 5.3 that it is in fact equal to Hsur. The definition
of this subspace and the arguments that follow depend crucially on the ability to localize a state
into a subset of phase space. For this, we will follow the formulation of phase space observables
developed in [5]. To this end, choose η ∈ S(Rd), such that ‖η‖ = 1 and supp η̂ ⊂ B1. Let ηδ be

such that η̂δ(p) = δ−
d
2 η̂(pδ ), a rescaling of η, so that supp η̂δ ⊂ Bδ and ‖ηδ‖ = 1.
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Now define the following family of coherent states by translating ηδ in phase space:

η̂x,p;δ(ξ) = e−ixξη̂δ(ξ − p)

or equivalently

ηx,p;δ(y) = eip(y−x)ηδ(y − x)

We use this to define a family, depending on δ > 0, of positive-operator-valued measures as in [7],
which serve as phase space observables. For any E ⊂ R2d Borel and ψ ∈ H let

Pδ(E)ψ = (2π)−d
∫∫
E

〈ηx,p;δ, ψ〉 ηx,p;δ dx dp

which is a weakly convergent integral. These operators are closely related to the Fourier-Bargmann
transform Fηδ : L2(Rd)→ L2(R2d) defined, for instance, in [4] Section 1.3.3. In our notation, Fηδ
may written as

(Fηδψ)(x, p) = (2π)−
d
2 〈ηx,p;δ, ψ〉

Using this, we can write Pδ(E) as

Pδ(E)ψ = (2π)−
d
2

∫∫
E

(Fηδψ)(x, p)ηx,p;δ dx dp = F ∗ηδχEFηδψ

where F ∗ηδ is the adjoint of Fηδ . Note that Pδ(E) is self-adjoint and non-negative by construction.
See [5] for more details about the basic properties of these positive-operator-valued measures.

In this paper, we will choose η that factors into functions of x‖ and x⊥:

η = η‖ ⊗ η⊥

where η‖ ∈ S(Rk) and η⊥ ∈ S(Rd−k). From now on, we will label the coordinates of R2d as

(x‖, p‖, x⊥, p⊥) where (x‖, p‖) ∈ Rk×Rk and (x⊥, p⊥) ∈ Rd−k×Rd−k. For E‖ ⊂ R2k, E⊥ ⊂ R2(d−k),
we can write

Pδ(E
‖ × E⊥) = P

‖
δ (E‖)⊗ P⊥δ (E⊥)

(see Proposition A.8).
For n > 0 and m > 0, we define the far set in phase space to have space coordinates in Scn (that

is, x⊥ ∈ Bc
n) and momentum in Scm (that is, p⊥ ∈ Bc

m), as well as its complement, the surface set:

Wn,m;far = R2k × (Bc
n ×Bc

m)

Wn,m;sur = (Wn,m;far)
c = R2k × (Bn × Rd−k) t R2k × (Bc

n ×Bm)

In words, Wn,m;far consists of states that have transverse position and transverse momentum
bounded away from 0 and Wn,m;sur is its complement. Here and elsewhere, the dimension of
Bn is understood from context.

Let Nm
H : H → R+ denote the family of continuous seminorms

Nm
H (ψ) = lim sup

δ→0
lim sup
n→∞

sup
t≥0
‖Pδ(Wn,m;far)e

−itHψ‖

This allows us to define the set of surface states as

H̃sur(H) =
⋂
m>0

{ψ ∈ H | Nm
H (ψ) = 0}

which is manifestly a closed subspace. The expression H̃sur without an operator will be used
throughout to denote H̃sur(H).
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3. Existence of the Wave Operators

To begin, we use the following direct application of the Corollary to Theorem XI.14 from [24]:

Lemma 3.1. Let u be a Schwartz function such that û has compact support. Let G be an open
set containing the compact set {2ξ | ξ ∈ supp û}. Then for any ` ∈ N, there is a constant C > 0
depending on `, u, and G so that

|e−itH0u(x)| ≤ C(1 + ‖x‖+ |t|)−`

for all pairs (x, t) such that x
t 6∈ G.

This is already enough to prove the existence of the wave operators:

Proof of part (i) of Theorem 1.1. By Cook’s method (see [24] Theorem XI.4), it suffices to show
that for D a dense set in H

∀ψ ∈ D,
∞∫

0

‖V e−itH0ψ‖ dt <∞

To this end, for α > 0 define

Dα = Span({ψ‖i ⊗ ψ
⊥
i | ψ

‖
i ∈ L

2(Rk), ψ⊥i ∈ S(Rd−k), supp ψ̂⊥i b B
c
α})

Here, Span means finite linear combinations so that
⋃
α>0Dα is dense in L2(Rd).

By linearity, it suffices to show the existence of Ω± for simple tensors in Dα:

ψ = ψ‖ ⊗ ψ⊥

By factoring χSr0 = Id⊗Br0 and e−itH0 = e−itH
‖
0 ⊗ e−itH⊥0 , we may write

‖V e−itH0ψ‖ = ‖V χSr0e
−itH0ψ‖ ≤M‖χSr0e

−itH0ψ‖ = M‖e−itH
‖
0ψ‖‖‖χBr0e

−itH⊥0 ψ⊥‖

= M‖ψ‖‖‖χBr0e
−itH⊥0 ψ⊥‖

(3.1)

We now estimate this last expression via Lemma 3.1. For this, note that we have

{2ξ | ξ ∈ supp ψ̂⊥i } b Bc
2α

Thus, if t > r0
2α and x ∈ Br0 we have that

‖x
t
‖ < r0

t
< 2α

Therefore, we may apply Lemma 3.1, to see that for any ` > 0

|e−itH⊥0 ψ⊥i (x)| ≤ C(1 + ‖x‖+ |t|)−`

for all x ∈ Br0 and t > r0
2α where C is independent of x and t. Choosing ` large enough, we get

that for all t > r0
2α

‖V e−itH0ψ‖2 ≤ C
∫
Br0

(1 + ‖x‖+ t)−` dx ≤ C(1 + t)−`+d
(3.2)

where C denotes a constant which may change from line to line but is always independent of x and
t. It follows immediately that

∞∫
0

‖V e−itH0ψ‖ dt <∞
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so that by Cook’s method Ω−ψ exists. Since
⋃
α>0
Dα is dense in H, we conclude that Ω−ψ exists

for all ψ ∈ H and the claim for Ω+ follows from a similar argument.
The inclusion σ(H0) ⊂ σac(H) is a result of the intertwining property of Ω±: Ω± defines a unitary

equivalence between H0 and H|Ω±(H) and σ(H0) is purely absolutely continuous. �

4. Enss Decomposition

We fix m > 0 in order to prove the following decomposition lemma. Since m is fixed in this
lemma and its proof, we will often suppress it in the notation. However, it should be noted that
the decomposition does depend on m.

Theorem 4.1. Let {ϕ}∞n=0 ⊂ H be a sequence of unit vectors. Then for any m > 0, there exists
some δ0 = δ0(m), so that for all δ ∈ (0, δ0) we may write

ϕn = ϕn;out + ϕn;in + ϕn;sur

where these summands satisfy

lim
n→∞

‖(Ω− − id)ϕn;out‖ = lim
n→∞

‖(Ω+ − id)ϕn;in‖ = 0(a)

ϕn;sur = Pδ(Wn,m;sur)ϕn, Pδ(Wn,m;far)ϕn = ϕn;out + ϕn;in(b)

If additionally ϕn = e−itnHϕ for some sequence of positive times {tn}∞n=0 then

lim
n→∞

‖ϕn;in‖ = 0(c)

Proof of Theorem 4.1. We now define subsets of R2d that decompose Wn,m;far into subsets of phase
space with momenta pointing towards and away from suppV . For a point (x, p) in phase space,
this means that its transverse position and transverse momenta are either aligned or unaligned
respectively:

Wn,m;out = {(x‖, p‖, x⊥, p⊥) ∈Wn,m;far | 〈x⊥, p⊥〉 ≥ 0}

Wn,m;in = {(x‖, p‖, x⊥, p⊥) ∈Wn,m;far | 〈x⊥, p⊥〉 < 0}

so that naturally

Wn,m;far = Wn,m;out tWn,m;in

and let

ϕn;out = Pδ(Wn,m;out)ϕn ϕn;in = Pδ(Wn,m;in)ϕn

ϕn;sur = Pδ(Wn,m;sur)ϕn

so that (b) holds.
It will be convenient to label the projections of Wn,m;in/out to the transverse coordinates as

W⊥n;in/out ⊂ R2(d−k) so that Wn,m;out/in = R2k ×W⊥n,m;out/in.

Lemma 4.2.

‖(Ω− − id)ϕn;out‖
n→∞−−−→ 0(4.1)

‖(Ω+ − id)ϕn;in‖
n→∞−−−→ 0(4.2)
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Proof. We may write

‖(Ω− − id)ϕn;out‖ ≤ ‖
∞∫

0

eitH(H −H0)e−itH0 dt ϕn;out‖

≤
∞∫

0

‖V e−itH0ϕn;out‖ dt ≤M
∞∫

0

‖χSr0e
−itH0ϕn;out‖ dt

≤M
∞∫

0

‖χSr0e
−itH0Pδ(Wn;out)‖op‖ϕn‖ dt

(4.3)

since V is supported on Sr0 and M = ‖V ‖op. Since we have that Wn;out = R2k ×W⊥n;out, we may

write Pδ(Wn;out) = Id ⊗ P⊥δ (W⊥n;out). By factoring χSr0 = Id⊗ Br0 and e−itH0 = e−itH
‖
0 ⊗ e−itH⊥0 ,

we may write

‖χSr0e
−itH0Pδ(Wn;out)‖op = ‖e−itH

‖
0 ⊗ (χBr0e

−itH⊥0 P⊥δ (W⊥n;out))‖op = ‖χBr0e
−itH⊥0 P⊥δ (W⊥n;out)‖op

because ‖A⊗B‖op = ‖A‖op‖B‖op (see [22], page 299) and ‖e−itH
‖
0 ‖op = 1.

Thus, to proceed we want to show that

lim
n→∞

∞∫
0

‖χBr0e
−itH⊥0 P⊥δ (W⊥n;out)‖op dt = 0(4.4)

from which (4.1) follows in light of (4.3). In what follows, the symbol C refers to such a constant,
the exact value of which may change from line to line.

From Proposition A.5 we have that

‖χBr0e
−itH⊥0 P⊥δ (W⊥n;out)‖2op ≤ (2π)−d

∫∫
W⊥n;out

‖χBr0e
−itH⊥0 η⊥x,p;δ‖2 dx dp

which we will estimate via the following lemma:

Lemma 4.3 (Lemma 2 of Theorem XI.112 in [24]). Let K be a compact subset of Rν and let O be
an open neighborhood of K. Let C(x0, t) = {x0 + vt | v ∈ O} be the classically allowed region for
particles starting at x0 with velocities in O. Then, for any ` there is a number µ and a constant
D = D(K,O, `, d) so that:

|e−itH0u(x)| ≤ D(1 + d(x, C(x0, t)))
−`‖(1 + | · −x0|µ)u‖

for all u with supp û ⊂ K and all x ∈ Rν .

In order to apply Lemma 4.3 we need the following geometric claims:

Lemma 4.4. For some absolute constant C, if n ≥ 8r0, and δ < 1
10m

‖x+ tξ − y‖ ≥ C(‖x‖+ n+ t‖p‖)

for all (x, p) ∈W⊥n;out, t ≥ 0, y ∈ Br0, and ξ ∈ O := supp η̂⊥x,p;δ +Bδ.

proof of claim. Since (x, p) ∈W⊥n;out we have that

‖x‖ > n, ‖p‖ > m, and 〈x, p〉 ≥ 0
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and we may write ξ = p+ p′ where p′ ∈ B2δ. It follows that

〈x, ξ〉
‖x‖‖ξ‖

≥ 〈x, p
′〉

‖x‖‖ξ‖
≥ − 2δ

m− 2δ
≥ −

m
5

m− m
5

= −1

4

Therefore

‖x+ tξ‖2 = ‖x‖2 + t2‖ξ‖2 + 2t 〈x, ξ〉 ≥ ‖x‖2 + t2‖ξ‖2 − t

2
‖x‖‖ξ‖

=
3

8
(‖x‖+ t‖ξ‖)2 +

5

8
(‖x‖ − t‖ξ‖)2

≥ 3

8
(‖x‖+ t(‖p‖ − 2δ))2 ≥ 1

5
(‖x‖+ t‖p‖)2

Furthermore, since ‖x‖ > n, we may write

‖x+ tξ‖ ≥ 1

5
(‖x‖+ n+ t‖p‖)

Finally, because ‖y‖ ≤ r0 ≤ 1
8n,

‖x+ tξ − y‖ ≥ 1

5
(‖x‖+ n+ ‖p‖t)− ‖y‖ ≥ 1

16
(‖x‖+ n+ ‖p‖t)

By letting C = 1
16 , we obtain the desired inequality for all ξ ∈ O. �

Let C(x, t) be the classically allowed region (see Lemma 4.3) corresponding to O. For y, ξ, and
(x, p) as above, we have that y 6∈ C(x, t) so we may apply Lemma 4.3 to see that for any ` > 0 there
is some µ > 0 such that

|(e−itH⊥0 η⊥x,p;δ)(y)| ≤ D
‖(1 + | · −x|µ)η⊥x,p;δ(·)‖

d(y, C(x, t))`

uniformly in (x, p) ∈W⊥n;out and y ∈ Br0 . We note that

‖(1 + | · −x|µ)η⊥x,p;δ(·)‖ ≤ ‖η⊥x,p;δ‖+

∫
Rd

‖y − x‖2µ|η⊥δ (y − x)|2 dy

 1
2

where the latter expression is independent of x and p (but depends on δ) and is finite since
η⊥δ ∈ S(Rd−k). Therefore, for (x, p) ∈W⊥n;out

‖χBr0e
−itH0η⊥x,p;δ‖2 ≤ C

∫
Br0

(‖x‖+ n+ t‖p‖)−` dy ≤ C(‖x‖+ n+ t‖p‖)−`



12 ADAM BLACK AND TAL MALINOVITCH

Using the above, for any ` large enough relative to d− k, we may write∫∫
W⊥n;out

‖χBr0e
−itH⊥0 η⊥x,p;δ‖2 dx dp ≤ C

∫∫
W⊥n;out

(‖x‖+ n+ t‖p‖)−` dx dp

≤ C
∫
Bcm

∫
Bcn

(‖x‖+ n+ t‖p‖)−` dx dp

≤ C
∫
Bcm

∞∫
n

(r + n+ t‖p‖)−`rd−k−1 dr dp

≤ C
∞∫
m

(n+ tρ)−`+d−kρd−k−1 dρ ≤ Ct−1(n+ tm)−`+2(d−k)

Thus, we may conclude that

‖χBr0e
−itH⊥0 P⊥δ (W⊥n;out)‖2op ≤ Ct−1(n+ tm)−`+2(d−k)(4.5)

To see (4.4), we first note that for all t and n

‖χBr0e
−itH⊥0 P⊥δ (W⊥n;out)‖op ≤ 1

so that by combining the two bounds and choosing ` sufficiently large we may write

∞∫
0

‖χBr0e
−itH⊥0 P⊥δ (W⊥n;out)‖op dt ≤

1
n∫

0

1 dt+ C

∞∫
1
n

t−
1
2 (n+ tm)−` dt

≤ 1

n
+ C
√
n

∞∫
1
n

(n+ tm)−` dt =
1

n
+ C

√
n

m
(n+

m

n
)−`+1

which proves (4.1). The limit (4.2) may be deduced from exactly the same argument by first writing

‖(Ω+ − id)ϕn;in‖ ≤M
0∫

−∞

‖χSr0e
−iH0tϕn;in‖ dt

and noting that for t ≤ 0, e−itH0ϕn;in behaves like e−itH0ϕn;out for t ≥ 0 because W⊥n;out and W⊥n;in

are related by (x, p) 7→ (x,−p). �

Lemma 4.5. If we assume that ϕn = e−itnHϕ for some sequence of positive times {tn}∞n=0, then

‖ϕn;in‖
n→∞−−−→ 0

Proof. This proof is based on an argument of Enss recorded in [28]. We can write

‖ϕn;in‖ = ‖Pδ(Wn;in)e−itnHϕ‖
≤ ‖Pδ(Wn;in)(e−itnH − e−itnH0)ϕ‖+ ‖Pδ(Wn;in)e−itnH0ϕ‖

so it suffices to prove that

‖Pδ(Wn;in)(e−itnH − e−itnH0)‖op
n→∞−−−→ 0(4.6)

and

s-lim
n→∞

Pδ(Wn;in)e−itnH0 = 0(4.7)
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To prove (4.6), we write

‖Pδ(Wn;in)(e−itnH − e−itnH0)‖op = ‖(eitnH − eitnH0)Pδ(Wn;in)‖op

= ‖(id−e−itnHeitnH0)Pδ(Wn;in)‖op ≤
tn∫

0

‖V eiτH0Pδ(Wn;in)‖op dτ

≤M
tn∫

0

‖χSr0e
iτH0Pδ(Wn;in)‖op dτ ≤M

∞∫
0

‖χSr0e
iτH0Pδ(Wn;in)‖op dτ

By using (4.5) and the symmetry between W⊥n;out and W⊥n;in when mapping (x, p) 7→ (x,−p) we see
that for any ` > 0

‖χSr0e
iτH0Pδ(Wn;in)‖op ≤ Cτ

1
2 (n+mτ)−`

as long as τ > 0, so we conclude, similarly to the above, that
∞∫

0

‖χSr0e
iτH0Pδ(Wn;in)‖op dτ

n→∞−−−→ 0

thus establishing (4.6).
For (4.7), we fix ψ ∈ H compactly supported and choose R so that suppψ ⊂ SR. Then

‖Pδ(Wn;in)e−iH0tnψ‖ = ‖Pδ(Wn;in)e−iH0tnχSRψ‖

≤ ‖χSRe
iH0tnPδ(Wn;in)‖op‖ψ‖

n→∞−−−→ 0

because the computation of the above operator norm applies just as well to SR for R > 0 arbitrary
instead of Sr0 .

Density establishes (4.7), which concludes the proof of the lemma. �

These lemmas establish Theorem 4.1 in full. �

5. Proof of part (ii) of Theorem 1.1: Asymptotic completeness

Recall that

H̃sur(H) =
⋂
m>0

{ψ ∈ H | Nm
H (ψ) = 0}

where

Nm
H (ψ) = lim sup

δ→0
lim sup
n→∞

sup
t≥0
‖Pδ(Wn,m;far)e

−itHψ‖

The proof is accomplished in three steps: the first is to prove that Ran Ω− and H̃sur span all of H,
the second is to show that their intersection is 0, and the third is to prove that H̃sur = Hsur.

5.1. Step 1: The Span of Ran Ω− and H̃sur. The above decomposition theorem (Theorem 4.1),
establishes the first step towards the proof of part (ii) of Theorem 1.1:

Lemma 5.1.

H = H̃sur + Ran(Ω−)

Proof. Let ϕ ∈ (Ran(Ω−))⊥. Fix m > 0 and for each n choose tn ≥ 0 such that

‖Pδ(Wn,m;far)e
−itnHϕ‖ > 1

2
sup
t≥0
‖Pδ(Wn,m;far)e

−itHϕ‖
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Let ϕn = e−itnHϕ. By Theorem 4.1, there is a δ0(m) such that for all δ ∈ (0, δ0), there is a
decomposition depending on m and δ

ϕn = ϕn;out + ϕn;in + ϕn;sur

obeying the properties in the theorem.
Now, since ϕ ⊥ Ran(Ω−), from property (a) in Theorem 4.1 we get that

lim
n→∞

| 〈ϕn, ϕn;out〉 | = lim
n→∞

| 〈ϕn,Ω−ϕn;out〉 | = 0

where we have also used that the propagator leaves Ran(Ω−) invariant. Furthermore, ‖ϕn;in‖
n→∞−−−→ 0

so that from property (b) in Theorem 4.1 we get that

〈Pδ(Wn;far)ϕn, ϕn〉 = 〈ϕn;in + ϕn;out, ϕn〉
n→∞−−−→ 0

But this implies that

‖Pδ(Wn;far)ϕn‖
n→∞−−−→ 0

as

‖Pδ(Wn;far)ϕn‖2 = 〈P 2
δ (Wn;far)ϕn, ϕn〉 ≤ 〈Pδ(Wn;far)ϕn, ϕn〉

since P 2
δ (E) ≤ Pδ(E) as in the proof of Proposition A.7. So we get that

1

2
sup
t≥0
‖Pδ(Wn,m;far)e

−itHϕ‖ ≤ ‖Pδ(Wn,m;farϕn‖
n→∞−−−→ 0

which implies that

lim
n→∞

sup
t≥0
‖Pδ(Wn;far)e

−itHϕ‖ = 0

for all δ < δ0(m). In other words, since the choice of m was arbitrary, we have shown that ϕ ∈ H̃sur.
�

5.2. Step 2: The Intersection of Ran Ω− and H̃sur.

Lemma 5.2.

H = Ran(Ω−)⊕ H̃sur

Proof. By Lemma 5.1, it suffices to show that Ran(Ω−) ∩ H̃sur = {0}. For this, we will define the
following auxiliary family of seminorms

Ñm
H (ψ) = lim sup

δ→0
lim sup
n→∞

lim sup
t→∞

‖Pδ(Wn,m;far)e
−itHψ‖

by replacing sup
t≥0

in the definition of Nm
H with lim sup

t→∞
so that we may define

Hlim sup
sur (H) :=

⋂
m>0

{ψ ∈ H | Ñm
H (ψ) = 0}

accordingly. Clearly, H̃sur ⊂ Hlim sup
sur (H) and will prove the stronger claim that

Ran(Ω−) ∩Hlim sup
sur (H) = {0}

To this end, we first prove:

Claim 5.3. If ψ ∈ Ran(Ω−)∩Hlim sup
sur (H) then there exists ϕ ∈ Hlim sup

sur (H0) such that Ω−(ϕ) = ψ.
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Proof. Let ψ ∈ Ran(Ω−) ∩Hlim sup
sur (H). Since ψ ∈ Ran(Ω−) there is some ϕ ∈ H such that:

ψ = Ω−ϕ

or equivalently

lim
t→∞
‖e−itH0ϕ− e−itHψ‖ = 0

For any fixed m > 0, δ > 0, n > 0, this implies that

lim sup
t→∞

‖Pδ(Wn,m;far)e
−itHψ − Pδ(Wn,m;far)e

−itH0ϕ‖

≤ lim sup
t→∞

‖Pδ(Wn,m;far)‖op‖e−itHψ − e−itH0ϕ‖ = 0

so that

lim sup
t→∞

‖Pδ(Wn,m;far)e
−itH0ϕ‖

≤ lim sup
t→∞

[
‖Pδ(Wn,m;far)(e

−itH0ϕ− e−itHψ)‖+ ‖Pδ(Wn,m;far)e
−itHψ‖

]
≤ lim sup

t→∞
‖Pδ(Wn,m;far)e

−itHψ‖

Therefore

lim sup
δ→0

lim sup
n→∞

lim sup
t→∞

‖Pδ(Wn,m;far)e
−itH0ϕ‖

≤ lim sup
δ→0

lim sup
n→∞

lim sup
t→∞

‖Pδ(Wn,m;far)e
−itHψ‖ = 0

since ψ ∈ Hlim sup
sur (H) so that because m was arbitrary, we see that ϕ ∈ Hlim sup

sur (H0). �

Thus, it suffices to show that Hlim sup
sur (H0) = {0}:

Claim 5.4.

Hlim sup
sur (H0) = {0}

Proof. Recall the following definition:

Dα = Span({ψ‖i ⊗ ψ
⊥
i | ψ

‖
i ∈ L

2(Rk), ψ⊥i ∈ S(Rd−k), supp ψ̂⊥i b B
c
α}

for some α > 0.
We will show that Dα ∩ Hlim sup

sur (H0) = {0} from which the claim follows by the density of
⋃
α>0
Dα

in H.
For this, fix ϕ ∈ Dα ∩Hlim sup

sur (H0) and choose m < α. For all δ < α−m sufficiently small

Pδ(Wn,m;sur)ϕ = Pδ(R2k ×Bn × Rd−k)ϕ

as Pδ(Wn,m;sur) = Pδ(R2k × Bn × Rd−k) + Pδ(R2k × Bc
n × Bm) and Pδ(R2k × Bc

n × Bm)ϕ = 0 by
Proposition A.6. Furthermore, this equality holds for e−itH0ϕ for all t since the free propagator
does not change a function’s Fourier support.

By using Proposition A.3 we see that, (since Sn = Rk ×Bn)

‖Pδ(Wn,m;sur)e
−itH0ϕ‖ = ‖Pδ(R2k ×Bn × Rd−k)e−itH0ϕ‖ = ‖(|ηδ|2 ∗ χSn)e−itH0ϕ‖

≤ ‖(|ηδ|2 ∗ χSn)χS2ne
−itH0ϕ‖+ ‖(|ηδ|2 ∗ χSn)χSc2ne

−itH0ϕ‖
≤ ‖χS2ne

−itH0ϕ‖+ ‖ϕ‖‖(|ηδ|2 ∗ χSn)χSc2n‖∞
= ‖χS2ne

−itH0ϕ‖+ ‖ϕ‖‖(|η⊥δ |2 ∗ χBn)χBc2n‖∞
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Note that for x ∈ Bc
2n and ` > 0 large enough

(|η⊥δ |2 ∗ χBn)(x) =

∫
Bn

|η⊥δ (y − x)|2 dy ≤ C
∫
Bn

‖x− y‖−` dy ≤ C
∫
Bn

(2n− ‖y‖)−` dy

≤ C
n∫

0

(2n− r)−`rd−k−1 dr ≤ Cn−`+d−k
(5.1)

so we can write, for any ` > 0

‖Pδ(Wn,m;sur)e
−itH0ϕ‖ ≤ ‖χSne−itH0ϕ‖+ C‖ϕ‖n−`

Thus, we conclude that

lim
n→∞

lim
t→∞
‖Pδ(Wn,m;sur)e

−itH0ϕ‖ ≤ lim
n→∞

lim
t→∞
‖χS2ne

−itH0ϕ‖

To estimate the right hand side, we note that x ∈ Sn implies that for t > n
2α we have

‖x
⊥

t
‖ < n

t
< 2α

Therefore, we may proceed as in the proof of (3.2) in the proof of part (i) of Theorem 1.1 to see
that for all ` > 0 we have

‖χSne−itH0ϕ‖2 ≤ C
∫
Bn

(1 + ‖x⊥‖+ t)−` dx⊥

and therefore

lim
t→∞
‖χSne−itH0ϕ‖ = 0

In summary, we have shown that we may find m0(α) such that for some δ0 if δ < δ0 then

lim
n→∞

lim
t→∞
‖Pδ(Wn,m0;sur)e

−itH0ϕ‖ = 0

Now, because ϕ ∈ Hlim sup
sur (H0), we may find δ < δ0 so that

lim
n→∞

lim sup
t→∞

‖Pδ(Wn,m0;far)e
−itH0ϕ‖ < ε

for any ε > 0. It follows that

‖ϕ‖ = lim
n→∞

lim sup
t→∞

‖Pδ(Wn,m0;sur)e
−itH0ϕ+ Pδ(Wn,m0;far)e

−itH0ϕ‖ < ε

and since ε was arbitrary, we see that ϕ = 0. �

These claims complete the proof of Lemma 5.2. �

It may be of interest to note that we have in fact proven that it is equivalent to define H̃sur with
a lim sup in time instead of a sup. In other words:

Corollary 5.5. We have that

Hlim sup
sur (H) = H̃sur

Proof. We have shown that

Ran(Ω−) ∩Hlim sup
sur (H) = {0}

and since H = Ran(Ω−)⊕ H̃sur and H̃sur ⊂ Hlim sup
sur (H), we have in addition that:

H = Ran(Ω−) +Hlim sup
sur (H)

And the desired equality follows immediately. �
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5.3. Step 3: H̃sur = Hsur.

proof of part (ii) of Theorem 1.1. Recall the definition of the surface subspace:

Hsur = {ψ ∈ H | ∀v > 0, lim
t→∞
‖χSvte−itHψ‖ = ‖ψ‖}

The proof of the desired equality will lean on a non-stationary phase argument:

Lemma 5.6. Fix v > 0. For any m < v
16 and δ < m

2 and for any ψ ∈ H we have

lim
t→∞
‖Pδ(R2k ×Bc

vt ×Bm)e−itHψ‖ = 0

Proof. Denote Avt,m = R2k ×Bc
vt ×Bm, then we can write

‖Pδ(Avt,m)e−itHψ‖ ≤ ‖Pδ(Avt,m)(e−itH − e−itH0)ψ‖+ ‖Pδ(Avt,m)e−itH0ψ‖
so it suffices to prove that

‖Pδ(Avt,m)(e−itH − e−itH0)‖op
t→∞−−−→ 0(5.2)

and

s-lim
t→∞

Pδ(Avt,m)e−itH0 = 0(5.3)

As before, both claims will follow from an estimate on the free propagation e−itH0 .

Claim 5.7. With all parameters as above, for any R > 0 and ` > 0, there exists C > 0, independent
of t,m and v such that

‖χSRe
−iH0tPδ(R2k ×Bc

v|t| ×Bm)‖op ≤ C(v|t|)−`(5.4)

for all |t| > 8R
v .

Proof. We will first prove the claim for t > 8R
v . Note that

χSRe
−itH0Pδ(R2k ×Bc

vt ×Bm) = e−iH
‖
0 t ⊗ (χBRe

−iH⊥0 tPδ(B
c
vt ×Bm))

so that

‖χSRe
−iH0tPδ(R2k ×Bc

vt ×Bm)‖op = ‖χBRe
−iH⊥0 tPδ(B

c
vt ×Bm)‖op

From Proposition A.5 we have that

‖χBRe
−itH⊥0 Pδ(B

c
vt ×Bm)‖2op ≤ (2π)−d

∫∫
Bcvt×Bm

‖χBRe
−itH⊥0 η⊥x,p;δ‖2 dx dp(5.5)

Let x ∈ Bc
vt, p ∈ Bm, y ∈ BR, and ξ ∈ O := supp η̂x,p;δ + Bδ. For ξ ∈ O, we may write ξ = p + p′,

where p′ ∈ B2δ, which implies

‖ξ‖ ≤ m+ 2δ ≤ v

8
It follows that

‖x+ ξt− y‖ ≥ ‖x‖ − ‖y‖ − t‖ξ‖ ≥ ‖x‖ −R− v

8
t ≥ 1

16
(‖x‖+ vt)

where we have used that ‖x‖ > vt > 8R > ‖y‖.
As in the proof of Lemma 4.2, we may apply Lemma 4.3 to see that for any ` > 0 there is some

C such that

|e−itH⊥0 η⊥x,p;δ(y)| ≤ C(‖x‖+ vt)−`

uniformly in x, p and y as above and t ≥ 0. Since R is fixed

‖χBRe
−itH⊥0 η⊥x,p;δ‖2 ≤ C(‖x‖+ vt)−`
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uniformly in x and p, therefore we may integrate (5.5) to find that

‖χBRe
−itH⊥0 Pδ(B

c
vt ×Bm)‖2op ≤ C(vt)−`+d−k

Furthermore, since Bc
vt × Bm is invariant under (x, p) 7→ (x,−p), the claim holds for t < −8R

v as
well. �

The limit (5.2), as in Lemma 4.5, follows from the bound

‖Pδ(Avt,m)(e−itH − e−itH0)‖ ≤M
t∫

0

‖χSr0e
iτH0Pδ(Avt,m) dτ‖op

and the above claim. The limit (5.3) may be established by noting that for ψ such that suppψ ⊂ SR
we can write

‖Pδ(Avt,m)e−iH0tψ‖ = ‖Pδ(Avt,m)e−iH0tnχSRψ‖ ≤ ‖χSRe
iH0tnPδ(Avt,m)‖op‖ψ‖

t→∞−−−→ 0

by the above. Since such ψ are dense, the lemma is proven. �

Proposition 5.8.

Hsur = H̃sur

Proof. We will start by showing that H̃sur ⊂ Hsur.
For this, choose ψ ∈ H̃sur and fix v > 0 for which we must show

lim
t→∞
‖χSvte−itHψ‖ = ‖ψ‖

To see this, fix ε > 0 and choose m < v
16 . Since ψ ∈ H̃sur, we know that for this m there is some δ

such that

lim sup
n→∞

sup
t≥0
‖Pδ(Wn,m;far)e

−itHψ‖ < ε

and thus for T0 large enough, if t > T0 then

sup
τ≥0
‖Pδ(Wvt,m;far)e

−iτHψ‖ < ε

Recalling that Wn,m;sur = R2k ×Bn × Rd−k ∪ R2k ×Bc
n ×Bm, we now write

‖ψ‖ = ‖(Pδ(Wvt,m;far) + Pδ(R2k ×Bvt × Rd−k) + Pδ(R2k ×Bc
vt ×Bm))e−itHψ‖

≤ sup
τ≥0
‖Pδ(Wvt,m;far)e

−iτHψ‖+ ‖Pδ(R2k ×Bvt × Rd−k)e−itHψ‖+ ‖Pδ(R2k ×Bc
vt ×Bm)e−itHψ‖

≤ ε+ ‖Pδ(R2k ×Bvt × Rd−k)e−itHψ‖+ ‖Pδ(R2k ×Bc
vt ×Bm)e−itHψ‖

for all t > T0. By Proposition A.3, we may estimate the second term

‖Pδ(R2k ×Bvt × Rd−k)e−itHψ‖ = ‖(ηδ ∗ χSvt)e−itHψ‖
≤ ‖(ηδ ∗ χSvt)χS2vte

−itHψ‖+ ‖(ηδ ∗ χSvt)χSc2vt,me
−itHψ‖

≤ ‖χS2vte
−itHψ‖+ ‖(ηδ ∗ χSvt)χSc2vt‖op‖ψ‖

Using (5.1), we see that for some ` > 0

‖ψ‖ ≤ ε+ ‖χS2vte
−itHψ‖+ C(vt)−` + ‖Pδ(R2k ×Bc

vt ×Bm)e−itHψ‖

By Lemma 5.6, taking the limit as t→∞ implies that

‖ψ‖ ≤ ε+ lim
t→∞
‖χS2vte

−itHψ‖
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Since ε was arbitrary and ‖χS2vte
−itHψ‖ ≤ ‖ψ‖ we may conclude that

lim
t→∞
‖χS2vte

−itHψ‖ = ‖ψ‖

To complete the proof, we will show that Hsur ⊥ Ran(Ω−), which implies that Hsur ⊂ H̃sur. In
fact, we will show that Hsur ⊥ Ω−(Dα) for any α > 0 and conclude by density.

Let ψ ∈ Hsur, ϕ ∈ Ω−(Dα). Note that the definition of Hsur implies

lim
t→∞
‖χScvte

−itHψ‖ = 0(5.6)

For any v > 0 and any t > 0, by writing

| 〈ψ,ϕ〉 | ≤ | 〈χScvte
−itHψ, e−itHϕ〉 |+ | 〈e−itHψ, χSvte−itHϕ〉 |

≤ ‖χScvte
−itHψ‖‖ϕ‖+ ‖ψ‖‖χSvte−itHϕ‖

and then taking a lim as t→∞ we see that

| 〈ψ,ϕ〉 | ≤ lim
t→∞

[
‖χScvte

−itHψ‖‖ϕ‖+ ‖ψ‖‖χSvte−itHϕ‖
]

(5.7)

Now, choose v < 2α, since ϕ ∈ Ω−(Dα), there is some ϕ̃ ∈ Dα such that

‖e−itHϕ− e−itH0ϕ̃‖ t→∞−−−→ 0

Next, because

ϕ̃ =

n∑
i=1

ϕ̃
‖
i ⊗ ϕ̃

⊥
i , supp ̂̃ϕ⊥i b Bc

α

x⊥ ∈ χBvt =⇒ ‖x⊥‖
t
≤ v < 2α =⇒ x⊥

t
6∈ Bc

2α = {2ξ | ξ ∈ supp ̂̃ϕ⊥i }
we may apply non-stationary phase as in the proof of Claim 5.4 to get that for any ` > 0

‖χSvte−itH0ϕ̃‖2 ≤ C
∫
Bvt

(1 + ‖x‖+ t)−` dx

where C does not depend t. In particular, for any ` large enough

‖χSvte−itH0ϕ̃‖2 ≤ C(1 + t)−`+d
t→∞−−−→ 0

So we can conclude that

‖χSvte−itHϕ‖
t→∞−−−→ 0

Applying this to inequality (5.7) combined with equation (5.6) we conclude that

〈ψ,ϕ〉 = 0

which completes the proof. �

This proposition with Lemma 5.2 prove part (ii) of Theorem 1.1, or in other words asymptotic
completeness. �
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6. Examples

Having established our main theorem, we analyze a few special cases to see some of the variety
of surface states that may occur. For this purpose, it will be convenient to work with the sufficient
condition for being a surface state given in the following proposition.

Proposition 6.1. In the notation of Section 1

H′sur ⊂ Hsur

Proof. Recall the definition of H′sur:

H′sur(H) = {ψ | lim
R→∞

sup
t≥0
‖χScRe

−itHψ‖ = 0}

We note that for any v > 0, ψ ∈ H, and t > 0 we have

‖χScvte
−itHψ‖ ≤ sup

τ≥0
‖χScvte

−iτHψ‖

Since this is true for any t > 0 we can take lim
t→∞

on both side to get

lim
t→∞
‖χScvte

−itHψ‖ ≤ lim
t→∞

sup
τ≥0
‖χScvte

−iτHψ‖ = lim
R→∞

sup
τ≥0
‖χScRe

−iτHψ‖

So if ψ ∈ H′sur, the last term is 0, and therefore ψ ∈ Hsur, as needed.
�

6.1. Surface States in σc(H). While it is clear that eigenfunctions of H are in H′sur, and so from
the above proposition are surface states, it is natural to ask whether there may also be surface
states in the continuous subspace. We answer this in the affirmative via a simple example.

Let d = 2 and consider a potential which depends on the x coordinate only:

V (x, y) = V0(x)

suppV0 ⊂ {|x| < 1}

Then we may write

H := − ∂2

∂x2
− ∂2

∂y2
+ V (x, y) = Hx ⊗ id + id⊗Hy

where Hx and Hy are the one-dimensional operators

Hx = − d2

dx2
+ V0(x)

Hy = − d2

dy2

Assume that Hx has an eigenvalue E0 with corresponding eigenfunction ψ0. For any ψ1(y) ∈ L2(R),
we claim that

ϕ(x, y) := ψ0(x)ψ1(y)(6.1)

is in Hsur(H).
To see this, note that since H = Hx ⊗ id + id⊗Hy we may write

e−itHϕ = e−itHxψ0 ⊗ e−itHyψ1 = e−itE0ψ0 ⊗ e−itHyψ1
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so that for all t

‖χScne
−itHϕ‖2 =

∫
R

∫
|x|>n

|e−itE0ψ0(x)e−itHyψ1(y)|2 dx dy

=

∫
R

|e−itHyψ1(y)|2 dy
∫
|x|>n

|e−itE0ψ0(x)|2 dx

= ‖e−itHyψ1‖2
∫
|x|>n

|ψ0(x)|2dx n→∞−−−→ 0

Therefore, by Proposition 6.1 we conclude that ϕ ∈ Hsur.
Furthermore, if ψ1 ∈ Hac(Hy), as Hy is purely ac, we can guarantee that ϕ ∈ Hac(H). This is

because for self-adjoint operators of the form D = A⊗ id + id⊗B, the spectral measure of f(x)g(y)
with respect to D is given by the convolution of the spectral measure of f with respect to A with
the spectral measure of g with respect to B (see [13] for more details).

Remark 6.2. In [25], Richard generalized this example by introducing a class of “Cartesian poten-
tials” that, roughly speaking, attain different limits in different coordinate directions. For instance,
we may consider potentials of the form V (x, y) = V0(x)V1(y), where V0(x) is as above and V1(y)
decays to a limit in a short-range way: there exists some c ∈ R such that

‖χ(|y| > R)(V1(y)− c)‖op ∈ L1(R)

Writing

H1 = −∆ + cV0(x)

Hx = − d2

dx2
+ cV0(x)

one may infer from Theorem 1.2 in [25] that

H = Ran(Ω−)⊕Hpp(H)⊕ Ran(Ω̃−)

where

Ω̃− = s-lim
t→∞

eitHe−itH1(id⊗PHpp(Hx))

By an argument similar to the one given for the above example, it is easy to see that Ran(Ω̃−) ⊂ H′sur

so that H′sur = Hsur.

6.2. Potentials Periodic in All But One Direction. Now suppose that k = d− 1 and that V
is periodic in all but one direction in that there are linearly independent vectors a1, . . . ad−1 ⊂ Rd
such that V (x+ ai) = V (x) for all i and x ∈ Rd. The additional structure of such potentials allows
us to give a simpler characterization of the surface states. The proof below can be gleaned from
the analysis of such systems in [8], but we include a proof for the sake of completeness. A similar
proof for a different system may be found in [27].

Theorem 6.3. Suppose that V is periodic in all but one direction. Then

H = Ran Ω− ⊕H′sur

In particular, H′sur = Hsur.
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Proof. Following [8], there exists U : H →
∫ ⊕
T H(θ) dθ unitary that partially diagonalizes H. Here,

T := [0, 2π)d−1 and H(θ) = L2(D) for

D = {x ∈ Rd−1 | x =
d−1∑
i=1

aiyi for y ∈ [0, 1)d−1} × R

is the cylinder over the basic cell of the periods. For each θ, we let H0(θ) be −∆ on H(θ) with core
given by ψ ∈ L2(D) with smooth extensions to Rd satisfying ψ(x + aj) = eiθjψ(x) for all j and

x ∈ Rd. Letting H(θ) = H0(θ) + V , we have the unitary equivalence

UHU∗ =

⊕∫
T

H(θ) dθ

These properties of the direct integral decomposition for periodic operators are enough to prove
Theorem 6.3. We refer the interested reader to [23] for more details about this decomposition.

From Theorem 5.2 of [28], for all θ ∈ T the wave operators

Ω±(θ) := s-lim
t→∓∞

eitH(θ)e−itH0(θ)Pac(H0(θ))

exist and are complete in the sense that

Ran Ω+(θ) = Ran Ω−(θ) = Hac(H(θ))

and H(θ) has no singular continuous spectrum. Therefore, for each θ,

H(θ) = Ran Ω−(θ)⊕Hpp(H(θ))

so that

H = U∗
⊕∫

T

Ran Ω−(θ) dθ ⊕Hs

where Hs :=
⊕∫
T
Hpp(H(θ)) dθ. These direct integrals are well-defined because θ 7→ Ω−(θ) and

θ 7→ Ppp(H(θ)) are measurable - see the Appendix to [8].
Following the proof of Theorem 1.8 in [14], Theorem XII.85 of [23] implies that

Ue−itHU∗ =

⊕∫
T

e−itH(θ) dθ Ue−itH0U∗ =

⊕∫
T

e−itH0(θ) dθ

Thus, for any ψ ∈ L2(Rd)

‖UeitHe−itH0ψ −
⊕∫

T

Ω±(θ)Uψ‖2 =

∫
T

∫
D

‖eitH(θ)e−itH0(θ)(Uψ)(θ, x)− Ω±(θ)(Uψ)(θ, x)‖2 dx dθ

The inner integral goes to 0 as t → ±∞ since Ω±(θ) exists so that by the dominated convergence

theorem, we see that Ω± = U
⊕∫
T

Ω±(θ) dθU∗. It follows that H = Ran Ω− ⊕ Hs. Furthermore,
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Proposition 6.1 of [8] shows thatHs ⊂ H′sur and it is clear that Ran Ω− ⊂ (H′sur)
⊥ because from part

(ii) of Theorem 1.1 we have Ran Ω− = (Hsur)
⊥ and H′sur ⊂ Hsur from Proposition 6.1. Therefore,

H = Ran Ω− ⊕Hs ⊂ (H′sur)
⊥ ⊕H′sur

which is only possible if in fact H = Ran Ω− ⊕H′sur. Since we have proven that in general Hsur is
the orthogonal complement of Ran Ω−, we see that H′sur = Hsur. �

6.3. Transient surface states. In this section, we exhibit a potential that induces states in
Hsur \ H′sur. Furthermore we show that one can build a potential with states that propagate in
the transverse direction arbitrarily slowly in a sense specified below. Potentials of this class were
originally considered by Yafaev [29].

For d = 2 and k = 1, let

V (x, y) = 〈y〉−2α V0(〈y〉−α x)

V0(x) = −χ[−1,1](x)

for some 0 < α < 1
2 . By writing

V (x, y) = −〈y〉−2α χ{|x|<〈y〉α}(x, y)

it is clear that for any fixed x

sup
y
|V (x, y)| =

{
|x|−2 |x| > 1

1 |x| < 1

Therefore,

‖χScrV ‖ = r−2 ∈ L1(r)

i.e. the potential V satisfies (1.3) and thus Theorem 1.1 applies.

Remark 6.4. One may also construct examples of potentials supported inside a strip for which
Hsur \H′sur 6= ∅. However, we consider the above example for the sake of computational simplicity.

Let h(y) be the operator on L2
x(R) given by

h(y) = − d2

dx2
+ V (x, y)

Solving directly, we find that for some E < 0, there is a normalized ϕ0(x) such that

h(0)ϕ0 = Eϕ0

and

ϕ0(x) = Ce−c|x| for |x| ≥ 1

By rescaling, we see that for all y ∈ R

h(y)ψ(x, y) = 〈y〉−2αEψ(x, y)

where

ψ(x, y) = 〈y〉−
α
2 ϕ0(〈y〉−α x)

Define

J : L2
y(R)→ L2(R2)

Jf = ψ(x, y)f(y)
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By Theorem 15.1 in [30], since α < 1
2 and because ϕ0(x) clearly satisfies∫

R

(1 + |x|4)| d
k

dxk
ϕ0(x)|2 dx <∞

for all k ≤ 2, there exists a phase function Ξ(y, t) : R2 → R such that the modified wave operator

Ω̃ = lim
t→∞

eitHJU0(t)

exists for all f ∈ L2
y(R) where

U0(t)f = eiΞ(y,t)(2it)−
1
2 f̂(

y

2t
)

Moreover, Ran Ω̃ is orthogonal to Ran Ω− and therefore lies in Hsur.
To specify the the space distribution of states in Ran(Ω̃), for β > 0 we let

Hsur,β = {φ ∈ H | lim
t→∞
‖χSc

tβ
e−itHφ‖ = 0}

Intuitively, if φ ∈ Hsur,β then at time t it is localized within a strip of width tβ.

Proposition 6.5. Suppose that φ ∈ Ran(Ω̃) for φ 6= 0. Then φ ∈ Hsur,β for all β > α but not for
β ≤ α. Moreover, φ ∈ Hsur \ H′sur.

Remark 6.6. The above proposition says that states in Ran(Ω̃) are localized at time t in a strip
of width tα+ε for any ε > 0, but not in a strip of width tα. In other words, such states propagate
in the transverse direction at rate proportional to tα. Thus, by modulating the decay of V in the
longitudinal direction, choosing α, one can create states that propagate in the transverse direction
arbitrarily slowly.

Proof. For φ ∈ Ran(Ω̃), there exists some f ∈ L2
y(R) such that

lim
t→∞
‖e−itHφ− JU0(t)f‖ = 0

so it suffices to show that

lim
t→∞
‖χSc

tβ
JU0(t)f‖ = 0

for β > α and

lim
t→∞
‖χSc

tβ
e−itHφ‖ 6= 0

for β ≤ α. To see this, note that

‖χScrJU0f‖2 =

∫
|x|>r

∫
R

|ψ(x, y)|2(2t)−1|f̂(
y

2t
)|2 dy dx =

∫
|x|>r

∫
R

|ψ(x, 2ty)|2|f̂(y)|2 dy dx

=

∫
|x|>r

∫
R

〈2ty〉−α |ϕ0(〈2ty〉−α x)|2|f̂(y)|2 dy dx =

∫
R

∫
|x|>r〈2ty〉−α

|ϕ0(x)|2|f̂(y)|2 dx dy

so we have shown that

‖χScrJU0f‖2 =

∫
R

g(r 〈2ty〉−α)|f̂(y)|2 dy

where

g(y) =

∫
|x|>|y|

|ϕ0(x)|2 dx
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Clearly g(0) = 1, g(∞) = 0, and g(y) ≥ 0 for all y. By taking r = tβ for some β > 0, we see that

‖χSc
tβ
JU0f‖2 =

∫
R

g(tβ 〈2ty〉−α)|f̂(y)|2 dy

Given this identity, by the dominated convergence theorem we need only take the limit as t → ∞
under the integral for different values of β. For β > α, this integrand goes to 0 pointwise as t→∞
so we see that

lim
t→∞
‖χSc

tβ
JU0f‖ = 0(6.2)

Conversely, for β < α, the integrand goes pointwise to g(0)|f̂(y)|2 and for α = β to g(|2y|−α)|f̂(y)|2,
both of which integrate to a positive quantity i.e.

lim
t→∞
‖χSc

tβ
JU0f‖ > 0

Finally, by choosing 0 < β < α, we see that

lim
R→∞

sup
t≥0
‖χScRe

−itHφ‖ ≥ lim
R→∞

‖χScRe
−iR

1
βHφ‖ = ‖f̂‖

by the above computation. Thus, if φ 6= 0, it is not contained in H′sur. �

6.4. Small surface perturbations. For a potential that is small enough in the appropriate sense,
one would expect that there should be no non-trivial surface states, as is the case for H0. Indeed,
this holds for k ≥ 3 from a result in [9]:

Theorem 6.7 (Cor. 2.1 from [9]). For V ∆-bounded with relative bound less than one, assume

that there exists some constants C ≤ (k−2)2

2 and C ′ > 0 such that

(1) |D⊥V (x)| ≤ C
‖x⊥‖2 .

(2) |D⊥D⊥V (x)| ≤ C
‖x⊥‖2

(3) |V (x)| ≤ C′

|x⊥|2

(4) ‖D⊥V ‖H2→H <∞
where D⊥ =

∑k
j=1 xj

∂
∂xj

and H2 is the Sobolev space of order two. Then the wave operators Ω±

exist and define a unitary equivalence between H and H0.

The condition (1) implies that outside of a compact neighborhood of the origin, V (x) must
be bounded by some dimensional constant. Therefore, the above conditions may be regarded as
imposing some sort of smallness on V .

6.5. Random surface potentials. In this section, we summarize some results from [10] which
show that almost surely Hsur is infinite dimensional for certain classes of random surface potentials.
To this end, let

H(ω) = H0 + Vω

be the random operator on Rd given by the potential

Vω =
∑
k∈Zν

qk(ω)f(x− (k, 0))

where f , the single site potential satisfies

(1) f ≥ 0 and f > σ > 0 on some non-empty open set.
(2) f ∈ Lp(Rd) for p ≥ 2 if d ≤ 3 and p > d

2 if d > 3.

and the random coefficients qk satisfy
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(1) The qk(ω) are i.i.d. random variables with distribution given by a measure µ such that
suppµ = [qmin, 0] for some qmin < 0.

(2) µ is Hölder continuous.
(3) There exist C, τ > 0 such that for all ε > 0

µ([qmin, qmin + ε]) ≤ Cετ

One can show that almost surely σ(H(ω)) = [E0,∞) where

E0 = inf σ(H0 + qmin

∑
k∈Zν

f(x− (k, 0)))

which is negative. Under these assumptions we have that

Theorem 6.8 (Theorem 1.2 in [10]). For H(ω) as above, there exists ε > 0 such that the spectrum
of H(ω) is almost surely pure point in the interval [E0, E0 + ε].

Because eigenfunctions are clearly surface states, for instance by Proposition 6.1, this demon-
strates that random models can induce an infinite dimensional space of surface states.

Appendix A. Properties of Phase Space Observables

In this appendix we prove several properties of the phase space observables Pδ(E) that we use

above. We recall that we choose η ∈ S(Rd), such that ‖η‖ = 1 and supp η̂ ⊂ B1, and η = η‖ ⊗ η⊥.

Let ηδ be such that η̂δ(p) = δ−
d
2 η̂(pδ ), a rescaling of η, so that supp η̂dδ ⊂ Bδ and ‖ηδ‖ = 1.

Now define the following family of coherent states by translating ηδ in phase space:

η̂x,p;δ(ξ) = e−ixξη̂δ(ξ − p)
or equivalently

ηx,p;δ(y) = eip(y−x)ηδ(y − x)

We use this to define a family, depending on δ > 0, of positive-operator-valued measures as in [7],
which serve as phase space observables. For any E ⊂ R2d Borel and ψ ∈ H let

Pδ(E)ψ = (2π)−d
∫∫
E

〈ηx,p;δ, ψ〉 ηx,p;δ dx dp

Proposition A.1. We have the following equality:

(2π)−d
∫
Rd

| 〈ηx,p;δ, ψ〉 |2 dp =

∫
Rd

|ηδ(y − x)ψ(y)|2 dy

Proof. If we denote by F(·) the Fourier transform then

(2π)−
d
2 〈ηx,p;δ, ψ〉 = (2π)−

d
2

∫
Rd

e−ip(y−x)η̄δ(y − x)ψ(y) dy

= eipxF(η̄δ(· − x)ψ(·))(p)
So, the proposition follows directly from Plancherel:

(2π)−d
∫
Rd

| 〈ηx,p;δ, ψ〉 |2 dp =

∫
Rd

|eipxF(η̄δ(· − x)ψ(·))(p)|2 dp

=

∫
Rd

|η̄δ(y − x)ψ(y)|2 dy

as needed. �
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Corollary A.2. For any δ > 0

Pδ(R2d) = id

Proof. This is a direct application of the above:

〈ψ, Pδ(R2d)ψ〉 = (2π)−d
∫∫∫∫
R2d

| 〈ηx,p;δ, ψ〉 |2 dx‖ dp‖ dx⊥ dp⊥

=

∫∫∫∫
R2d

|ηδ(y − x)ψ(y)|2 dx‖ dy‖ dx⊥ dy⊥ = ‖ηδ‖2‖ψ‖2 = ‖ψ‖2

from which it follows that Pδ(R2d) = id because a self-adjoint operator is determined by its diagonal
matrix elements. �

Corollary A.3. For A‖ ⊂ Rk, A⊥ ⊂ Rd−k let E = A‖×Rk×A⊥×Rd−k, and A = A‖×A⊥. Then
for any δ > 0 and ψ ∈ S

(Pδ(E)ψ)(y) = [(|ηδ|2 ∗ χA)ψ](y)

Proof. This is also a direct application, where we used the short hand x = (x‖, x⊥), p = (p‖, p⊥):

〈ψ, Pδ(E)ψ〉 =

∫
A‖

∫
Rk

∫
A⊥

∫
Rd−k

| 〈ηx,p;δ, ψ〉 |2 dx‖ dp‖ dx⊥ dp⊥ =

∫
A

∫
Rd

|ηδ(y − x)ψ(y)|2 dy dx

=

∫
Rd

(|ηδ|2 ∗ χA)(y)|ψ(y)|2 dy

from which the claim follows. �

Proposition A.4. For each E ⊂ R2d Borel, 0 ≤ Pδ(E) ≤ id. In particular

‖Pδ(E)‖op ≤ 1

Proof.

0 ≤ 〈ψ, Pδ(E)ψ〉 = (2π)−d
∫∫∫∫
E

| 〈ηx,p;δ, ψ〉 |2 dx‖ dp‖ dx⊥ dp⊥

≤ (2π)−d
∫∫∫∫
R2d

| 〈ηx,p;δ, ψ〉 |2 dx‖ dp‖ dx⊥ dp⊥ = ‖ψ‖2

The operator norm bound comes from the fact that for a self-adjoint operator A

‖A‖op = sup
‖ψ‖=1

| 〈ψ,Aψ〉 |

from which the claim is immediate. �

Next we want to be able to bound the operator norm of APδ(E) for another operator A:

Proposition A.5. For any δ > 0, and A any operator we have, and any Borel set E ⊂ R2d:

‖APδ(E)‖2op ≤ (2π)−d
∫∫
E

‖Aηx,p;δ‖2 dx‖ dp‖ dx⊥ dp⊥
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Proof.

‖APδ(E)ψ‖2 = (2π)−2d

∫
Rd

∣∣∣∣∣∣
∫∫
E

〈ηx,p;δ, ψ〉Aηx,p;δ(y) dx‖ dp‖ dx⊥ dp⊥

∣∣∣∣∣∣
2

dy

≤ (2π)−2d

∫
Rd

∫∫
R2d

| 〈ηx,p;δ, ψ〉 |2 dx‖ dp‖ dx⊥ dp⊥
∫∫
E

|Aηx,p;δ(y)|2 dx‖ dp‖ dx⊥ dp⊥ dy

= (2π)−d‖ψ‖2
∫∫
E

‖Aηx,p;δ‖2 dx‖ dp‖ dx⊥ dp⊥

as needed. �

Proposition A.6. Let ψ ∈ H be such that supp ψ̂ ⊂ D‖×D⊥ = D and let E ⊂ Rk×B‖×Rd−k×B⊥
Borel where B = B‖ ×B⊥ ⊂ Rd satisfies d(D,B) ≥ δ. Then

Pδ(E)ψ = 0

Furthermore, if F ⊂ Rk ×D‖ × Rd−k ×D⊥ then

P δ
2
(E)P δ

2
(F ) = 0

Proof. The first equality follows directly from the fact that

〈ηx,p;δ, ψ〉 =

∫
Rd

eixξ ¯̂ηδ(ξ − p)ψ̂(ξ) dξ = 0

for p ∈ B since supp η̂x,p;δ ⊂ Bδ + p.
Similarly, the second equality comes from the fact that for any ϕ ∈ H

supp ̂P δ
2
(F )ϕ ⊂ D +B δ

2

and an application of the first equality. �

Proposition A.7. For any δ > 0, and for any Borel set D ⊂ Rd, suppose that
E ⊂ D‖ × Rk ×D⊥ × Rd−k is a Borel set, and denote D = D‖ ×D⊥. Then for any ϕ ∈ H

‖Pδ(E)ϕ‖2 ≤ ‖(|ηδ|2 ∗ χD)ϕ‖‖ϕ‖(A.1)

Proof. The inequality (A.1) is a result of the fact that P 2
δ (E) ≤ Pδ(E) (which is easy to establish

since 0 ≤ Pδ(E) ≤ id):

‖Pδ(E)ϕ‖2 = 〈P 2
δ (E)ϕ,ϕ〉 ≤ 〈Pδ(E)ϕ,ϕ〉 ≤ 〈Pδ(D‖ × Rk ×D⊥ × Rd−k)ϕ,ϕ〉

= 〈(|ηδ|2 ∗ χD)ϕ,ϕ〉 ≤ ‖(|ηδ|2 ∗ χD)ϕ‖‖ϕ‖
as needed. �

For the following claims, suppose that

η(x) = η‖(x‖)η⊥(x⊥)

where η‖ and η⊥ are functions in S(Rk) and S(Rd−k), respectively, of L2 norm 1. It is easy to see
that in this case

ηx,p;δ(y) = η
‖
x‖,p‖;δ

(y‖)η⊥x⊥,p⊥;δ(y
⊥)

where the shifted functions η
‖
x‖,p‖;δ

(y‖) and η⊥
x⊥,p⊥;δ

(y⊥) are defined analogously to before. Further-

more, P
‖
δ and P⊥δ are defined as operators on L2(Rk) and L2(Rd−k), respectively, in the obvious

way.
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Proposition A.8. Under the above choice of η, if E = E‖ × E⊥ ⊂ R2k × R2(d−k) then we have

Pδ(E) = P
‖
δ (E‖)⊗ P⊥δ (E⊥)

Proof. For ψ‖ ∈ L2(Rk) and ψ⊥ ∈ L2(Rd−k)

P dδ (E)(ψ‖ ⊗ ψ⊥)

= (2π)−d
∫∫
E‖

∫∫
E‖

〈η‖
x‖,p‖;δ

⊗ η⊥x⊥,p⊥;δ, ψk ⊗ ψd−k〉 η
‖
x‖,p‖;δ

⊗ η⊥x⊥,p⊥;δ dx
‖ dx⊥ dp‖ dp⊥

= P
‖
δ (E‖)ψ‖ ⊗ P⊥δ (E⊥)ψ⊥

Since Pδ(E) acts as claimed on elementary tensors, the claim is established by the definition of the
tensor product of two operators. �

Corollary A.9. For any δ > 0, let A = B ⊗ C where B is an operator acting on L2(Rk) and C
acts on L2(Rd−k). Then for E of the above form

‖APδ(E)‖2op ≤ (2π)−d
∫∫
E‖

‖Bηx,p;δ‖2 dx dp ·
∫∫
E⊥

‖Cηx,p;δ‖2 dx dp

and

‖Pδ(E)‖op = ‖P ‖δ (E‖)‖op‖P⊥δ (E⊥)‖op

Proof. This is immediate from Proposition A.8 and Proposition A.5. �

Appendix B. Potentials that Decay in x⊥

In this appendix, we explain how our proofs may be adjusted to accommodate potentials satis-
fying

‖V χScR‖op ∈ L1(B.1)

sup
x∈Rd

|V (x)| = M <∞(B.2)

To see the existence, or part (i) of Theorem 1.1, for such potentials, we fix ε ∈ (0, 2α) and change
inequality (3.1) so that it reads

‖V e−itH0ψ‖ ≤M‖ψ‖‖‖χBεte−itH
⊥
0 ψ⊥‖+ ‖V χScεt‖op‖ψ‖

The condition on ε guarantees that 2α > εt
t , which allows us to bound the first summand in the

above by C(1 + t)−`+d for any ` > 0 (compare to inequality (3.2)). This, combined with the
condition (B.1), lets us conclude the existence of the wave operators.

For part (ii) of Theorem 1.1, in the proof of Lemma 4.2 must be modified by fixing
ε < 1

8 and replacing (4.3) by

‖(Ω− − id)ϕn;out‖

≤M
∞∫

0

‖χSε(n+mt)e
−itH0ϕn;out‖ dt+

∞∫
0

‖V χSε(n+mt)‖op‖ϕn;out‖ dt

Again, the second summand decays as per condition (B.1). For the first summand, we must only
change Claim 4.4 to allow y ∈ Sε(n+mt), which is achieved via the restriction on ε . Similar
adjustment will give the result for Lemma 5.6. After this, the proof works as written.
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